Kaufmann TJ (2019) A new study in contrasts: brain MRI for the depiction of tumor metabolism. Neuro Oncol 21:1095–1096. https://doi.org/10.1093/neuonc/noz121
Article PubMed PubMed Central Google Scholar
Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622. https://doi.org/10.1038/nrn2175
Hu LS, Eschbacher JM, Dueck AC et al (2012) Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol 33:69–76. https://doi.org/10.3174/ajnr.A2743
Article PubMed PubMed Central Google Scholar
Law M, Yang S, Babb JS et al (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25:746–755
PubMed PubMed Central Google Scholar
Law M, Young RJ, Babb JS et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498. https://doi.org/10.1148/radiol.2472070898
Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249:601–613. https://doi.org/10.1148/radiol.2492071659
Article PubMed PubMed Central Google Scholar
Boxerman JL, Quarles CC, Hu LS et al (2020) Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 22:1262–1275. https://doi.org/10.1093/neuonc/noaa141
Article PubMed PubMed Central Google Scholar
Zaharchuk G, El Mogy IS, Fischbein NJ, Albers GW (2012) Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke. Stroke 43:1843–1848. https://doi.org/10.1161/strokeaha.111.639773
Article PubMed PubMed Central Google Scholar
Nael K, Meshksar A, Liebeskind DS, Coull BM, Krupinski EA, Villablanca JP (2013) Quantitative analysis of hypoperfusion in acute stroke: arterial spin labeling versus dynamic susceptibility contrast. Stroke 44:3090–3096. https://doi.org/10.1161/strokeaha.113.002377
Article PubMed PubMed Central Google Scholar
Woods JG, Achten E, Asllani I et al (2024) Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: acquisition, quantification, and clinical applications. Magn Reson Med 92:469–495. https://doi.org/10.1002/mrm.30091
Article PubMed PubMed Central Google Scholar
Qin Q, Alsop DC, Bolar DS et al (2022) Velocity-selective Arterial spin labeling perfusion MRI: A review of the state of the Art and recommendations for clinical implementation. Magn Reson Med 88:1528–1547. https://doi.org/10.1002/mrm.29371
Article PubMed PubMed Central Google Scholar
Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT (2006) Velocity-selective arterial spin labeling. Magn Reson Med 55:1334–1341. https://doi.org/10.1002/mrm.20906
Qin Q, van Zijl PC (2016) Velocity-selective-inversion prepared arterial spin labeling. Magn Reson Med 76:1136–1148. https://doi.org/10.1002/mrm.26010
Liu D, Xu F, Li W, van Zijl PC, Lin DD, Qin Q (2020) Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition. Magn Reson Med 84:2512–2522. https://doi.org/10.1002/mrm.28310
Article PubMed PubMed Central Google Scholar
Liu D, Li W, Xu F, Zhu D, Shin T, Qin Q (2021) Ensuring both velocity and Spatial responses robust to B0/B1 + field inhomogeneities for velocity-selective arterial spin labeling through dynamic phase-cycling. Magn Reson Med 85:2723–2734. https://doi.org/10.1002/mrm.28622
Xu F, Liu D, Zhu D et al (2023) Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow. NeuroImage 271:120039. https://doi.org/10.1016/j.neuroimage.2023.120039
Qu Y, Kong D, Wen H et al (2022) Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI. Eur Radiol 32:2976–2987. https://doi.org/10.1007/s00330-021-08406-7
Park JE, Kim HS, Kim N et al (2024) Prediction of pseudoprogression in post-treatment glioblastoma using dynamic susceptibility contrast-derived oxygenation and microvascular transit time heterogeneity measures. Eur Radiol 34:3061–3073. https://doi.org/10.1007/s00330-023-10324-9
Khashbat Md D, Abe Md T, Ganbold Md M et al (2016) Correlation of 3D arterial spin labeling and Multi-Parametric dynamic susceptibility contrast perfusion MRI in brain tumors. J Med Invest 63:175–181. https://doi.org/10.2152/jmi.63.175
Lambrecht S, Liu D, Dzaye O et al (2024) Velocity-Selective arterial spin labeling perfusion in monitoring high grade gliomas following therapy: clinical feasibility at 1.5T and comparison with dynamic susceptibility contrast perfusion. Brain Sci 14. https://doi.org/10.3390/brainsci14020126
Liu D, Xu F, Lin DD, van Zijl PCM, Qin Q (2017) Quantitative measurement of cerebral blood volume using velocity-selective pulse trains. Magn Reson Med 77:92–101. https://doi.org/10.1002/mrm.26515
Qin Q, Qu Y, Li W et al (2019) Cerebral blood volume mapping using Fourier-transform-based velocity-selective saturation pulse trains. Magn Reson Med 81:3544–3554. https://doi.org/10.1002/mrm.27668
Article PubMed PubMed Central Google Scholar
Li W, Liu D, van Zijl PCM, Qin Q (2021) Three-dimensional whole-brain mapping of cerebral blood volume and venous cerebral blood volume using fourier transform-based velocity-selective pulse trains. Magn Reson Med 86:1420–1433. https://doi.org/10.1002/mrm.28815
Article PubMed PubMed Central Google Scholar
Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant Deconvolution matrix. Magn Reson Med 50:164–174. https://doi.org/10.1002/mrm.10522
Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867
PubMed PubMed Central Google Scholar
Franklin SL, Voormolen N, Bones IK et al (2021) Feasibility of Velocity-Selective arterial spin labeling in breast cancer patients for Noncontrast-Enhanced perfusion imaging. J Magn Reson Imaging 54:1282–1291. https://doi.org/10.1002/jmri.27781
Article PubMed PubMed Central Google Scholar
Varallyay CG, Nesbit E, Horvath A et al (2018) Cerebral blood volume mapping with Ferumoxytol in dynamic susceptibility contrast perfusion MRI: comparison to standard of care. J Magn Reson Imaging 48:441–448. https://doi.org/10.1002/jmri.25943
Article PubMed PubMed Central Google Scholar
Kouwenberg V, van Santwijk L, Meijer FJA, Henssen D (2022) Reliability of dynamic susceptibility contrast perfusion metrics in pre- and post-treatment glioma. Cancer Imaging 22:28. https://doi.org/10.1186/s40644-022-00466-2
Article PubMed PubMed Central Google Scholar
Essig M, Nguyen TB, Shiroishi MS et al (2013) Perfusion MRI: the five most frequently asked clinical questions. AJR Am J Roentgenol 201:W495–510. https://doi.org/10.2214/ajr.12.9544
Bell LC, Stokes AM, Quarles CC (2020) Analysis of postprocessing steps for residue function dependent dynamic susceptibility contrast (DSC)-MRI biomarkers and their clinical impact on glioma grading for both 1.5 and 3T. J Magn Reson Imaging 51:547–553. https://doi.org/10.1002/jmri.26837
Thompson G, Mills SJ, Coope DJ, O’Connor JP, Jackson A (2011) Imaging biomarkers of angiogenesis and the microvascular environment in cerebral tumours. Br J Radiol 84 Spec No 2:S127–144.
Comments (0)