Friston K. The free-energy principle: A unified brain theory? Nat Rev Neurosci. 2010;11:127–38.
Itti L, Koch C. Computational modelling of visual attention. Nat Rev Neurosci. 2001;2:194–203.
Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, Gold JI. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci. 2012;15:1040–6.
CAS PubMed PubMed Central Google Scholar
Soltani A, Izquierdo A. Adaptive learning under expected and unexpected uncertainty. Nat Rev Neurosci. 2019;20:635–44.
CAS PubMed PubMed Central Google Scholar
Ferguson KA, Cardin JA. Mechanisms underlying gain modulation in the cortex. Nat Rev Neurosci. 2020;21:80–92.
CAS PubMed PubMed Central Google Scholar
Lawson RP, Rees G, Friston KJ. An aberrant precision account of autism. Front Hum Neurosci. 2014. https://doi.org/10.3389/fnhum.2014.00302.
PubMed PubMed Central Google Scholar
Van de Cruys S, Evers K, Van der Hallen R, Van Eylen L, Boets B, de -Wit L, et al. Precise minds in uncertain worlds: predictive coding in autism. Psychol Rev. 2014;121:649–75.
Pellicano E, Burr D. When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci. 2012;16:504–10.
MacLennan K, O’Brien S, Tavassoli T. In our own words: the complex sensory experiences of autistic adults. J Autism Dev Disord. 2022;52:3061–75.
Rodenkirch C, Liu Y, Schriver BJ, Wang Q. Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nat Neurosci. 2019;22:120–33.
Poe GR, Foote S, Eschenko O, Johansen JP, Bouret S, Aston-Jones G, et al. Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci. 2020. https://doi.org/10.1038/s41583-020-0360-9.
PubMed PubMed Central Google Scholar
McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: a focused review. Neurosci Biobehav Rev. 2019;105:190–9.
CAS PubMed PubMed Central Google Scholar
Ghosh S, Maunsell JHR. Locus coeruleus norepinephrine contributes to visual-spatial attention by selectively enhancing perceptual sensitivity. Neuron. 2024. https://doi.org/10.1016/j.neuron.2024.04.001.
PubMed PubMed Central Google Scholar
Zhao S, Chait M, Dick F, Dayan P, Furukawa S, Liao H-I. Pupil-linked phasic arousal evoked by violation but not emergence of regularity within rapid sound sequences. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-12048-1.
PubMed PubMed Central Google Scholar
Vazey EM, Moorman DE, Aston-Jones G. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proc Natl Acad Sci USA. 2018;115: E9439–E48.
Cole L, Lightman S, Clark R, Gilchrist ID. Tonic and phasic effects of reward on the pupil: implications for locus coeruleus function. Proc R Soc Lond B Biol Sci. 2022;289:20221545.
Bast N, Boxhoorn S, Supér H, Helfer B, Polzer L, Klein C, et al. Atypical arousal regulation in children with autism but not with attention-deficit/hyperactivity disorder as indicated by pupillometric measures of locus coeruleus activity. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:11–20.
Mather M, Clewett D, Sakaki M, Harley CW. Norepinephrine ignites local hotspots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav Brain Sci. 2016;39: e200.
Jordan R. The locus coeruleus as a global model failure system. Trends Neurosci. 2024;47:92–105.
Waschke L, Tune S, Obleser J. Local cortical desynchronization and pupil-linked arousal differentially shape brain states for optimal sensory performance. Elife. 2019;8: e51501.
CAS PubMed PubMed Central Google Scholar
Turner KL, Gheres KW, Drew PJ. Relating pupil diameter and blinking to cortical activity and hemodynamics across arousal states. J Neurosci. 2022. https://doi.org/10.1523/jneurosci.1244-22.2022.JN-RM-1244-22.
PubMed PubMed Central Google Scholar
Urai AE, Braun A, Donner TH. Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nat Commun. 2017;8:14637.
PubMed PubMed Central Google Scholar
Pfeffer T, Keitel C, Kluger DS, Keitel A, Russmann A, Thut G, et al. Coupling of pupil- and neuronal population dynamics reveals diverse influences of arousal on cortical processing. Elife. 2022;11: e71890.
CAS PubMed PubMed Central Google Scholar
Murphy PR, O’Connell RG, O’Sullivan M, Robertson IH, Balsters JH. Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum Brain Mapp. 2014;35:4140–54.
PubMed PubMed Central Google Scholar
Joshi S, Li Y, Kalwani Rishi M, Gold JI. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron. 2016;89:221–34.
Devilbiss DM, Waterhouse BD. Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. J Neurophysiol. 2010;105:69–87.
PubMed PubMed Central Google Scholar
Megemont M, McBurney-Lin J, Yang H. Pupil diameter is not an accurate real-time readout of locus coeruleus activity. Elife. 2022;11: e70510.
CAS PubMed PubMed Central Google Scholar
Lawson RP, Mathys C, Rees G. Adults with autism overestimate the volatility of the sensory environment. Nat Neurosci. 2017;20:1293–9.
CAS PubMed PubMed Central Google Scholar
Zhao S, Liu Y, Wei K. Pupil-linked arousal response reveals aberrant attention regulation among children with autism spectrum disorder. J Neurosci. 2022. https://doi.org/10.1523/JNEUROSCI.0223-22.2022.
PubMed PubMed Central Google Scholar
Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, et al. The mismatch negativity (MMN) – a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol. 2012;123:424–58.
Fitzgerald K, Todd J. Making sense of mismatch negativity. Front Psychiatry. 2020;11:468.
PubMed PubMed Central Google Scholar
Friston K. A theory of cortical responses. Philosophic Trans Royal Soc B: Biol Sci. 2005;360:815–36.
Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, et al. Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci U S A. 2004;101:6809–14.
PubMed PubMed Central Google Scholar
Schwartz S, Shinn-Cunningham B, Tager-Flusberg H. Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. Neurosci Biobehav Rev. 2018;87:106–17.
PubMed PubMed Central Google Scholar
Ruiz-Martínez FJ, Rodríguez-Martínez EI, Wilson CE, Yau S, Saldaña D, Gómez CM. Impaired P1 habituation and mismatch negativity in children with autism spectrum disorder. J Autism Dev Disord. 2020;50:603–16.
Cary E, Pacheco D, Kaplan-Kahn E, McKernan E, Matsuba E, Prieve B, et al. Brain signatures of early and late neural measures of auditory habituation and discrimination in autism and their relationship to autistic traits and sensory overresponsivity. J Autism Dev Disord. 2023. https://doi.org/10.1007/s10803-022-05866-8.
Todd J, Heathcote A, Mullens D, Whitson LR, Provost A, Winkler I. What controls gain in gain control? Mismatch negativity (MMN), priors and system biases. Brain Topogr. 2014;27:578–89.
Charman T, Loth E, Tillmann J, Crawley D, Wooldridge C, Goyard D, et al. The EU-AIMS longitudinal European autism project (LEAP): clinical characterisation. Mol Autism. 2017;8: 27.
PubMed PubMed Central Google Scholar
Kret ME, Sjak-Shie EE. Preprocessing pupil size data: guidelines and code. B
Comments (0)