Micropropagation of (Wall.) Hurusawa—a valuable medicinal plant through root culture and evaluation of its genetic fidelity and metabolomics

Abdalla N, Dobránszki J (2024) Meta-topolin as an effective benzyladenine derivative to improve the multiplication rate and quality of in vitro axillary shoots of Húsvéti rozmaring apple scion. Plants 13:1568–1581. https://doi.org/10.3390/plants13111568

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdulkareem AA (2023) Effect of media type and cytokinines on micropropagation of two cultivars of pomegranate Punica granatum L. IOP Conf Ser Earth Environ Sci 1262(4):042010–042021. https://doi.org/10.1088/1755-1315/1262/4/042010

Article  Google Scholar 

Abubakar AR, Haque M (2020) Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci 12:1–10. https://doi.org/10.4103/jpbs.jpbs_175_19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Applequist WL, Brinckmann JA, Cunningham AB, Hart RE, Heinrich M, Katerere DR, Van Andel T (2020) Scientistsʼ warning on climate change and medicinal plants. Planta Med 86:10–18. https://doi.org/10.1055/a-1041-3406

Article  CAS  PubMed  Google Scholar 

Arvind J, Amit JK, Sarang JK (2021) Extraction, phytochemical screening and antioxidant potential of ethanolic extract of Drypetes roxburghii. J Pharma Res Int 33:358–363. https://doi.org/10.9734/jpri/2021/v33i64A35793

Article  Google Scholar 

Bahmankar M, Rahnama H, Salehi M, Noori SAS (2024) Somatic embryogenesis and genetic fidelity in camelina by RAPD markers and flow cytometry. Plant Cell Tiss Org Cult 156:67–78. https://doi.org/10.1007/s11240-024-02686-9

Article  CAS  Google Scholar 

Balkrishna A, Nain P, Joshi M, Khandrika L, Varshney A (2021) Supercritical fluid extract of Putranjiva roxburghii Wall. seeds mitigates fertility impairment in a zebrafish model. Molecules 26:1020–1043. https://doi.org/10.3390/molecules26041020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barstow M (2021) Putranjiva roxburghii. The IUCN red list of threatened species 2021:e.T183256116A183256149. https://doi.org/10.2305/IUCN.UK.20211.RLTS.T183256116A183256149.en

Bezerra FMDH, Vieira-Neto AE, Benevides SC, de Tavares KCS, Castro Ribeiro AD, Santos SAAR, de Oliveira LG, Magalhães FEA, Campos AR (2023) Pharmacological potential of cis-jasmone in adult zebrafish (Danio rerio). Planta Med 89:539–550. https://doi.org/10.1055/a-1988-2098

Bijekar SR, Gayatri MC, Rajanna L (2015) Antimicrobial activity of isolated flavonoid fractions from Drypetes roxburghii (Wall.) Huresawa and its phytochemical fingerprinting. Int J Innov Res Sci Engi Tech 4:6214–6224. https://doi.org/10.15680/IJIRSET.2015.0407127

Article  Google Scholar 

Cao XL, Sparling M, Dabeka R (2019) P-cymene, a natural antioxidant, in Canadian total diet foods: occurrence and dietary exposures. J Sci Food Agric 99:5606–5609. https://doi.org/10.1002/jsfa.9854

Article  CAS  PubMed  Google Scholar 

Caparica R, Júlio A, Araújo MEM, Baby AR, Fonte P, Costa JG, Santos de Almeida T (2020) Anticancer activity of rutin and its combination with ionic liquids on renal cells. Biomolecules 10:233–248. https://doi.org/10.3390/biom10020233

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhry GES, Zeenia Sharifi-Rad J, Calina D (2024) Hispidulin: a promising anticancer agent and mechanistic breakthrough for targeted cancer therapy. Naunyn-Schmiedeb Arch Pharmacol 397:1919–1934. https://doi.org/10.1007/s00210-023-02645-9

Article  CAS  Google Scholar 

Chen YG, Huang JH, Luo R, Ge HZ, Wołowicz A, Wawrzkiewicz M, Gładysz-Płaska A, Li B, Yu QX, Kołodyńska D, Lv GY (2021) Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. Ecotoxicol Environ Saf 219:112336–112417. https://doi.org/10.1016/j.ecoenv.2021.112336

Article  CAS  PubMed  Google Scholar 

Choi J, Lee DH, Park SY, Seol JW (2019) Diosmetin inhibits tumor development and block tumor angiogenesis in skin cancer. Biomed Pharmacother 117:109091–109099. https://doi.org/10.1016/j.biopha.2019.109091

Article  CAS  PubMed  Google Scholar 

Coelho N, Gonçalves S, Romano A (2020) Endemic plant species conservation: biotechnological approaches. Plants 9:345–367. https://doi.org/10.3390/plants9030345

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conde F, Carmona-Martin E, Hormaza JI, Petri C (2023) In vitro establishment and micropropagation of mango (Mangifera indica L.) from cotyledonary nodes. In Vitro Cell Dev Biol-Plant 59:197–208. https://doi.org/10.1007/s11627-023-10334-8

Article  CAS  Google Scholar 

da Cruz ACF, Rocha DI, Iarema L, Ventrella MC, Costa MGC, Neto VBP, Otoni WC (2014) In vitro organogenesis from root culture segments of Bixa orellana L. (Bixaceae). In Vitro Cell Dev Biol-Plant 50:76–83. https://doi.org/10.1007/s11627-013-9580-2

Article  CAS  Google Scholar 

da Rocha Neto AC, Maraschin M, Di Piero RM (2015) Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Int J Food Microbiol 215:64–70. https://doi.org/10.1016/j.ijfoodmicro.2015.08.018

Article  CAS  PubMed  Google Scholar 

da Silva CV, de Oliveira LS, Loriato VAP, da Silva LC, de Campos JMS, Viccini LF, de Oliveira EJ, Otoni WC (2011) Organogenesis from root explants of commercial populations of Passiflora edulis Sims and a wild passion fruit species, P. cincinnata Masters. Plant Cell Tissue Organ Cult 107:407–416. https://doi.org/10.1007/s11240-011-9991-x

Article  Google Scholar 

Dixit J, Verma P, Mishra P, Tiwari KN, Tiwari SK, Mishra SK, Singh J (2024) Direct shoot regeneration from cotyledonary node of Uraria picta (Jacq.) Desv. ex DC., an important plant of dashmula drugs, and assessment of genetic fidelity, metabolic profiling, and anti-diabetic activity. Ind Crops Prod 219:119064–119113. https://doi.org/10.1016/j.indcrop.2024.119064

Article  CAS  Google Scholar 

Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128. https://doi.org/10.1002/cyto.a.10013

Article  PubMed  Google Scholar 

Doležel J, Bartoš JAN (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. https://doi.org/10.1093/aob/mci005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310

Article  CAS  PubMed  Google Scholar 

dos Santos MAC, do Rêgo MM, de Queiróz MA, da Cruz ACF, da Silva TCR, Pinheiro MVM, Batista DS, Rocha DI, Otoni WC (2021) Evaluation of root-to-shoot de novo organogenesis in wild guava species, Psidium schenckianum and P. guineense (Myrtaceae). Vegetos 34:68–76. https://doi.org/10.1007/s42535-020-00177-8

Article  Google Scholar 

Doyle JJ, Doyle JL (2012) Isolation of pant DNA from fresh tissue. Focus (San Fr) 12:13–15

Google Scholar 

Duta-Cornescu G, Constantin N, Pojoga DM, Nicuta D, Simon-Gruita A (2023) Somaclonal variation—advantage or disadvantage in micropropagation of the medicinal plants. Int J Mol Sci 24:838–857. https://doi.org/10.3390/ijms24010838

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Banna MF, Farag NB, Massoud HY, Kasem MM (2023) Exogenous IBA stimulated adventitious root formation of Zanthoxylum beecheyanum K. Koch stem cutting: histo-physiological and phytohormonal investigation. Plant Physiol Biochem 197:107639–107711. https://doi.org/10.1016/j.plaphy.2023.107639

Article  CAS  PubMed  Google Scholar 

Eskundari RD, Taryono T, Indradewa D, Purwestri YA (2024) Scanning electron microscopy analysis of tea’s embryo axis explant cultured on Murashige and Skoog medium containing 2,4-dichlorophenoxyacetic acid. J Trop Biodivers Biotechnol 9:76451–76458. https://doi.org/10.22146/jtbb.76451

Article  Google Scholar 

Faisal M, Qahtan AA, Alatar AA (2023) Thidiazuron induced in vitro plant regeneration, phenolic contents, antioxidant potential, GC-MS profiles and nuclear genome stability of Plectranthus amboinicus (Lour.) Spreng. Horticulturae 9:277–293. https://doi.org/10.3390/horticulturae9020277

Article  Google Scholar 

Fan C, Li K, Xu L, Deng Z, Deng S, Li J, Mou J (2024) Plant regeneration through two pathways of direct organogenesis in Paeonia ostii ‘Feng Dan.’ Plant Cell Tiss Org Cult 158:1–13. https://doi.org/10.1007/s11240-024-02793-7

Article  CAS  Google Scholar 

Comments (0)

No login
gif