Effects of different culture media and Fe-EDDHA applications on the propagation of chestnut and its biochemical profiles

Adrian M, Jeandet P, Veneau J, Weston LA, Bessis R (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23:1689–1702. https://doi.org/10.1023/b:joec.0000006444.79951.75

Article  CAS  Google Scholar 

Ak BE, Kıyar PK, Hatipoglu IH, Dikmetas B (2021) Effects of different BA and IBA concentrations on proliferation and rooting of ‘GARNEM’ rootstock in vitro propagation. Intl J Agr Environ Food Sci 5:470–476. https://doi.org/10.31015/jaefs.2021.4.6

Article  Google Scholar 

Akyüz B (2025) Effect of different carbon sources and concentrations on in vitro propagation of chestnut. Plant Cell Tiss Org Cult 160:1–15. https://doi.org/10.1007/s11240-024-02960-w

Al-Mayahi AMW (2021) In vitro plant regeneration system for date palm (Phoenix dactylifera L.): effect of chelated iron sources. J Genet Eng Biotechnol 19:83. https://doi.org/10.1186/s43141-021-00177-4

Antonopoulou C, Dimassi K, Therios I, Chatzissavvidis C, Padakis I (2007) The effect of Fe-EDDHA and of ascorbic acid on in vitro rooting of the peach rootstock GF-677 explants. Acta Physio Plant 29:559–561. https://doi.org/10.1007/s11738-007-0067-9

Article  CAS  Google Scholar 

Aytar EC, Durmaz A, Uysal Dİ, Şentürk B, Harzli İ, Basılı T, Özdener Kömpe Y, Deniz İG (2025) Contribution of metabolic and physiological research for future conservation efforts of Himantoglossum Spreng. (Orchidaceae) species. Flora 323:152678. https://doi.org/10.1016/j.flora.2025.152678

Barreneche T, Botta R, Robin C (2019) Advances in breeding of chestnuts. In book: Achieving sustainable cultivation of tree nuts Burleigh Dodds Science Publishing Limited Cambridge UK. pp 317–348. https://doi.org/10.19103/AS.2018.0042.16

Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek K-H, Jan AT (2024) Soil and mineral nutrients in plant health: a prospective study of iron and phosphorus in the growth and development of plants. Curr Iss Mol Biol 46:5194–5222. https://doi.org/10.3390/cimb46060312

Article  CAS  Google Scholar 

Bresgen N, Eckl PM (2015) Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 115:808–847. https://doi.org/10.3390/biom5020808

Article  CAS  Google Scholar 

Castillo B, Smith MAL, Madhavi DL, Yadava UL (1997) Interactions of irradiance level and iron chelate source during shoot tip culture of Carica papaya L. HortScience 32:1120–1123

CAS  Google Scholar 

Celebioglu B, Myers JR, Hart JP, Porch T, Griffiths P (2024) Phenotypic variability for leaf and pod color within the snap bean association panel. J Am Soc Hortic Sci 149:15–26. https://doi.org/10.21273/Jashs05326-23

Article  CAS  Google Scholar 

Chatterjee C, Gopal R, Dube BK (2006) Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanum tuberosum L.). Sci Hort 108:1–6. https://doi.org/10.1016/j.scienta.2006.01.004

Article  CAS  Google Scholar 

Christensen B, Sriskandarajah S, Serek M, Müller R (2008) In vitro culture of Hibiscus rosa-sinensis L.: influence of iron, calcium and bap on establishment and multiplication. Plant Cell Tiss Org Cult 93:151–161. https://doi.org/10.1007/s11240-008-9354-4

Article  CAS  Google Scholar 

Clark RB (1983) Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. Genet Aspecs Plant Nutr, pp 49–70. https://doi.org/10.1007/978-94-009-6836-3_5

Conedera M, Tinner W, Krebs P, de Rigo D, Caudullo G (2016) Castanea sativa in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp 78–79

Connolly EL, Guerinot ML (2002) Minireview: iron stress inplants. Genome Biol 3:1. https://doi.org/10.1186/gb-2002-3-8-reviews1024

Cuenca B, Sánchez C, Aldrey A, Bogo B, Blanco B, Correa B, Vidal N (2017) Micropropagation of axillary shoots of hybrid chestnut (Castanea sativa × C. crenata) in liquid medium in a continuous immersion system. Plant Cell Tiss Org Cult 131:307–320. https://doi.org/10.1007/s11240-017-1285-5

Article  CAS  Google Scholar 

Damayanti R, Rachma N, Al Riza DF, Hendrawan Y (2021) The prediction of chlorophyll content in African leaves (Vernonia amygdalina Del.) using flatbed scanner and optimised artificial neural network. Pertanika J Sci Tech 29:2509–2530. https://doi.org/10.47836/pjst.29.4.15

Article  Google Scholar 

De Vasconcelos MCBM, Bennett RN, Rosa EA, Ferreira-Cardoso JV (2010) Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. J Sci Food Agric 90:1578–1589. https://doi.org/10.1002/jsfa.4016

Article  CAS  PubMed  Google Scholar 

Ekinci H, Saskin N, Ak BE, Aydınlık Y (2025) Optimization of micropropagation of ARDA® ([Prunus dulcis × Prunus persica] × Prunus amygdalus) rootstock in in vitro conditions. Appl Fruit Sci 67:26. https://doi.org/10.1007/s10341-024-01254-x

Fernandes P, Amaral A, Colavolpe B, Balonas D, Serra M, Pereira A, Costa RL (2020) Propagation of new chestnut rootstocks with improved resistance to Phytophthora cinnamomi – new cast rootstocks. Silva Lusitana 28:15–29. https://doi.org/10.1051/silu/20202801015

Article  Google Scholar 

Furusaki S, Takeda T (2011) Bioreactors for plant cell culture, Editor(s): Murray Moo-Young, Comprehensive biotechnology (Second Edition), Academic Press, pp 361–372. https://doi.org/10.1016/B978-0-08-088504-9.00104-5

Garrison W, Dale A, Saxena PK (2013) Improved shoot multiplication and development in hybrid hazelnut nodal cultures by ethylenediamine di-2-hydroxy-phenylacetic acid (Fe-EDDHA). Can J Plant Sci 93:511–521

CAS  Google Scholar 

Gresshoff PM, Doy CH (1972) Haploid Arabidopsis thaliana callus and plants from anther culture. Aust J Biol Sci 25:259–264. https://doi.org/10.1071/bi9720259

Article  Google Scholar 

Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266. https://doi.org/10.1016/j.pbi.2009.05.006

Article  CAS  PubMed  Google Scholar 

Hasan Ali Dagman F (2019) Micropropagation of some fruit rootstocks by classical tissue culture and new generation temporary immersion bioreactor system. Master Thesis, Çukurova University, Institute of Science, Adana/Turkiye (In Turkish)

Hennion B (2010) Chestnut production in France: review, perspectives. Acta Hortic 866:493–497. https://doi.org/10.17660/ActaHortic.2010.866.66

Article  Google Scholar 

Hernández-Apaolaza L, Lucena JJ (2011) Influence of the soil/solution ratio, interaction time, and extractant on the evaluation of iron chelate sorption/desorption by soils. J Agric Food Chem 59:2493–2500. https://doi.org/10.1021/jf104120e

Article  CAS  PubMed  Google Scholar 

Huang H, Hu CX, Tan Q, Hu X, Sun X, Bi L (2012) Effects of Fe–EDDHA application on iron chlorosis of citrus trees and comparison of evaluations on nutrient balance with three approaches. Sci Hortic 146:137–142. https://doi.org/10.1016/j.scienta.2012.08.015

Article  CAS  Google Scholar 

Javanmardi J, Khalighi A, Kashi A, Bais HP, Vivanco JM (2002) Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem 50:5878–5883

CAS  PubMed  Google Scholar 

Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741. https://doi.org/10.1021/jf011429s

Article  CAS  PubMed  Google Scholar 

Kasajima I (2019) Measuring plant colors. Plant Biotechnol (Tokyo) 36:63–75. https://doi.org/10.5511/plantbiotechnology.19.0322a

Keskin M, Sekerli YE, Gunduz K (2018) Influence of leafwater content on the prediction of nutrient stress in strawberry leaves using a chromameter. Intl J Agric Biol 20:2103–2109. https://doi.org/10.17957/IJAB/15.0736

Article  Google Scholar 

Keskin M, Setlek P, Demir S (2017) Use of color measurement systems in food science and agriculture. In: International advanced researches and engineering congress November 16–18 2017 Osmaniye, Turkiye, Proceeding Book, pp 16–18

Kiferle C, Lucchesini M, Mensuali-Soli A, Maggini R, Raffaeli A, Pardossi A (2011) Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Cent Eur J Biol 6:946–957. https://doi.org/10.2478/s11535-011-0057-1

Article  CAS  Google Scholar 

Korel F, Balaban MÖ (2009) Chemical composition and health aspects of chestnut (Castanea spp.). In: Alasalvar C, Shahidi F (eds) Tree nuts: composition, phytochemicals and health effects. CRC Press Taylor and Francis Group: Boca Raton

Korkmaz A, Gökmen Yılmaz F, Harmankaya M, Gezgin S (2023) Reduction of lime-based iron chlorosis in apple trees. Acad J Agri 12:127–134. https://doi.org/10.29278/azd.1263559

Article  Google Scholar 

Kumar P, Sharma RK (2019) Development of SPAD value-based linear models for non-destructive estimation of photosynthetic pigments in wheat (Triticum aestivum L.). Indian J Genet 79:96–99. https://doi.org/10.31742/ijgpb.79.1.13

Article  CAS  Google Scholar 

Lambardi L, Sebastiani L, Vitagliano C (2003) Physiological, biochemical, and molecular effects of in vitro induced iron deficiency in peach rootstock Mr. S 2/5. J Plant Nutr 26:2149–2163

León AP, Viña SZ, Frezza D, Chaves A, Chiesa A (2007) Estimation of chlorophyll contents by correlations between SPAD-502 meter and chroma meter in butterhead lettuce. Commun Soil Sci Plant Anal 38(19-20):2877–2885. https://doi.org/10.1080/00103620701663115

Li J, Cao X, Jia X, Liu L, Cao H, Qin W, Li M (2021) Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Front Plant Sci 12:710093. https://doi.org/10.3389/fpls.2021.710093

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Liu H, Zhang YA (2006) A review on chlorophyll meter application on nitrogen fertilizer recommendation. Plant Nutr Fert Sci 1:125–132

Google Scholar 

Likhanov A, Klyuvadenko A, Subin O, Shevchuk M, Dubchak M (2022) Gallic acid as a non-specific regulator of phenol synthesis and growth of regenerate plants of Corylus avellana (L.) H. Karst. and Salix alba L. in vitro. Ukrainan J for Wood Sci 13:52–63. https://doi.org/10.31548/forest.13(4).2022.52-63

Article  Google Scholar 

Lucena JJ (2006) Synthetic iron chelates to correct iron deficiency in plants. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4743-6_5

Mccown BH, Sellmer JC (1987) General media and vessels suitable for woody plant culture. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Forest Science 24–26. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0994-1_2

Mellano MG, Beccaro GL, Donno D, Marinoni DT, Boccacci P, Canterino S, Cerutti AK, Bounous G (2012) Castanea spp. biodiversity conservation: collection and characterization of the genetic diversity of an endangered species. Genet Resour Crop Evol 59:1727–1741. https://doi.org/10.1007/s10722-012-9794-x

Article  Google Scholar 

Muleo R, Cinelli F, Viti R (1995) Application of tissue culture on quince rootstock in iron limiting conditions. J Plant Nutr 18:91–103

Comments (0)

No login
gif