Santoro S, Velhote MCP, Malzoni CE, Mechenas ASG, Damiani D, Maksoud JG (2004) Digestive adaptation with intestinal reserve: a new surgical proposal for morbid obesity. Rev Bras Videocir 2(3):130–138
Santoro S, Malzoni CE, Velhote MCP et al (2006) Digestive adaptation with intestinal reserve: a neuroendocrine-based operation for morbid obesity. Obes Surg 16(10):1371–1379
Santoro S, Castro LC, Velhote MCP et al (2012) Sleeve gastrectomy with transit bipartition. A potent intervention for metabolic syndrome and obesity. Ann Surg 256(1):104–110
Santoro S (2015) From bariatric to pure metabolic surgery: new concepts on the rise. Ann Surg 262:79–80
Frikke-Schmidt H, Seeley RJ (2016) Defending a new hypothesis of how bariatric surgery works. Obesity 24(3):555. https://doi.org/10.1002/oby.21444
Holst JJ, Gromada J (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 287:E199–E206
Azevedo FR, Santoro S, Correa-Giannella ML, Toyoshima MT, Giannella-Neto D, Calderaro D, Gualandro DM, Yu PC, Caramelli B (2018) A prospective randomized controlled trial of the metabolic effects of sleeve gastrectomy with transit bipartition. Obes Surg 28(10):3012–3019
Santoro S (2020) The bipartition may be better, and not just for super obesity. Surg Obes Relat Dis 16(8):e49–e50
Platell CF, Coster J, McCauley RD, Hall JC (2002) The management of patients with the short bowel syndrome. World J Gastroenterol 8(1):13–20. https://doi.org/10.3748/wjg.v8.i1.13
Article PubMed PubMed Central Google Scholar
Pereira SS, Guimarães M, Almeida R et al (2019) Biliopancreatic diversion with duodenal switch (BPD-DS) and single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) result in distinct post-prandial hormone profiles. Int J Obes 43(12):2518–2527
Lebel S, Dion G, Marceau S, Biron S, Robert M, Biertho L (2016) Clinical outcomes of duodenal switch with a 200-cm common channel: a matched, controlled trial. Surg Obes Relat Dis 12(5):1014–1020
Surve A, Zaveri H, Cottam D, Belnap L, Cottam A, Cottam S (2017) A retrospective comparison of biliopancreatic diversion with duodenal switch with single anastomosis duodenal switch (SIPS-stomach intestinal pylorus sparing surgery) at a single institution with two year follow-up. Surg Obes Relat Dis 13(3):415–422
Müller TD, Finan B, Bloom SR et al (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130. https://doi.org/10.1016/j.molmet.2019.09.010
Article CAS PubMed PubMed Central Google Scholar
Reimann F, Gribble FM (2016) Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion. J Diabetes Investig 7(Suppl 1):13–19
CAS PubMed PubMed Central Google Scholar
Gorboulev V, Schürmann A, Vallon V et al (2012) Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61(1):187–196
Baud G, Daoudi M, Hubert T et al (2016) Bile diversion in Roux-en-Y gastric bypass modulates sodium-dependent glucose intestinal uptake. Cell Metab 23(3):547–553
Kuhre RE, Frost CR, Svendsen B, Holst JJ (2015) Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 64(2):370–382
Lejeune MPGM, Westerterp KR, Adam TCM, Luscombe-Marsh ND, Westerterp-Plantenga MS (2006) Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am J Clin Nutr 83(1):89–94
Ekberg JH, Hauge M, Kristensen LV et al (2016) GPR119, a major enteroendocrine sensor of dietary triglyceride metabolites coacting in synergy with FFA1 (GPR40). Endocrinology 157(12):4561–4569
Hansen M, Scheltema MJ, Sonne DP et al (2016) Effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon-like peptide-1 secretion. Diabetes Obes Metab 18(6):571–580
Nielsen S, Svane MS, Kuhre RE et al (2017) Chenodeoxycholic acid stimulates glucagon-like peptide-1 secretion in patients after Roux-en-Y gastric bypass. Physiol Rep 5(3):e13140
PubMed PubMed Central Google Scholar
Goldspink DA, Lu VB, Billing LJ et al (2018) Mechanistic insights into the detection of free fatty and bile acids by ileal glucagon-like peptide-1 secreting cells. Mol Metab 7:90–101
Kuhre RE, Wewer Albrechtsen NJ, Larsen O et al (2018) Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol Metab 11:84–95
CAS PubMed PubMed Central Google Scholar
Liu S, Marcelin G, Blouet C et al (2018) A gut-brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus. Mol Metab 8:37–50. https://doi.org/10.1016/j.molmet.2017.12.003
Article CAS PubMed Google Scholar
Tomlinson E et al (2002) Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143:1741–1747
Lan T, Morgan DA, Rahmouni K et al (2017) FGF19, FGF21, and an FGFR1/ b-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab 26:709-718.e3
CAS PubMed PubMed Central Google Scholar
Marcelin G, Jo YH, Li X et al (2013) Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab 3(1):19–28. https://doi.org/10.1016/j.molmet.2013.10.002
Article CAS PubMed PubMed Central Google Scholar
Tomlinson E, Fu L, John L et al (2002) Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143(5):1741–1747. https://doi.org/10.1210/endo.143.5.8850
Article CAS PubMed Google Scholar
Bozadjieva N, Heppner KM, Seeley RJ (2018) Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes 67(9):1720–1728. https://doi.org/10.2337/dbi17-0007
Article CAS PubMed PubMed Central Google Scholar
Fang Q, Li H, Song Q et al (2013) Serum fibroblast growth factor 19 levels are decreased in Chinese subjects with impaired fasting glucose and inversely associated with fasting plasma glucose levels. Diabetes Care 36(9):2810–2814. https://doi.org/10.2337/dc12-1766
Article CAS PubMed PubMed Central Google Scholar
Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS et al (2012) Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun 427:600–605. https://doi.org/10.1016/j.bbrc.2012.09.104
Article CAS PubMed PubMed Central Google Scholar
Zheng C, Zhou W, Wang T, You P, Zhao Y, Yang Y et al (2015) A novel TGR5 activator WB403 promotes GLP-1 secretion and preserves pancreatic β-cells in type 2 diabetic mice. PLoS ONE 10:e0134051. https://doi.org/10.1371/journal.pone.0134051
Article CAS PubMed PubMed Central Google Scholar
Finn PD, Rodriguez D, Kohler J et al (2019) Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice. Am J Physiol-Gastrointest Liver Physiol 316(3):G412–G424. https://doi.org/10.1152/ajpgi.00300.2018
Article CAS PubMed PubMed Central Google Scholar
Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light- chain enhancer of activated B cells (NF-κB) in mice. Hepatology 54:1421–1432. https://doi.org/10.1002/hep.24525
Comments (0)