Common channel length and implications to the weight loss

Santoro S, Velhote MCP, Malzoni CE, Mechenas ASG, Damiani D, Maksoud JG (2004) Digestive adaptation with intestinal reserve: a new surgical proposal for morbid obesity. Rev Bras Videocir 2(3):130–138

Google Scholar 

Santoro S, Malzoni CE, Velhote MCP et al (2006) Digestive adaptation with intestinal reserve: a neuroendocrine-based operation for morbid obesity. Obes Surg 16(10):1371–1379

PubMed  Google Scholar 

Santoro S, Castro LC, Velhote MCP et al (2012) Sleeve gastrectomy with transit bipartition. A potent intervention for metabolic syndrome and obesity. Ann Surg 256(1):104–110

PubMed  Google Scholar 

Santoro S (2015) From bariatric to pure metabolic surgery: new concepts on the rise. Ann Surg 262:79–80

Google Scholar 

Frikke-Schmidt H, Seeley RJ (2016) Defending a new hypothesis of how bariatric surgery works. Obesity 24(3):555. https://doi.org/10.1002/oby.21444

Article  PubMed  Google Scholar 

Holst JJ, Gromada J (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 287:E199–E206

CAS  PubMed  Google Scholar 

Azevedo FR, Santoro S, Correa-Giannella ML, Toyoshima MT, Giannella-Neto D, Calderaro D, Gualandro DM, Yu PC, Caramelli B (2018) A prospective randomized controlled trial of the metabolic effects of sleeve gastrectomy with transit bipartition. Obes Surg 28(10):3012–3019

PubMed  Google Scholar 

Santoro S (2020) The bipartition may be better, and not just for super obesity. Surg Obes Relat Dis 16(8):e49–e50

PubMed  Google Scholar 

Platell CF, Coster J, McCauley RD, Hall JC (2002) The management of patients with the short bowel syndrome. World J Gastroenterol 8(1):13–20. https://doi.org/10.3748/wjg.v8.i1.13

Article  PubMed  PubMed Central  Google Scholar 

Pereira SS, Guimarães M, Almeida R et al (2019) Biliopancreatic diversion with duodenal switch (BPD-DS) and single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) result in distinct post-prandial hormone profiles. Int J Obes 43(12):2518–2527

CAS  Google Scholar 

Lebel S, Dion G, Marceau S, Biron S, Robert M, Biertho L (2016) Clinical outcomes of duodenal switch with a 200-cm common channel: a matched, controlled trial. Surg Obes Relat Dis 12(5):1014–1020

PubMed  Google Scholar 

Surve A, Zaveri H, Cottam D, Belnap L, Cottam A, Cottam S (2017) A retrospective comparison of biliopancreatic diversion with duodenal switch with single anastomosis duodenal switch (SIPS-stomach intestinal pylorus sparing surgery) at a single institution with two year follow-up. Surg Obes Relat Dis 13(3):415–422

PubMed  Google Scholar 

Müller TD, Finan B, Bloom SR et al (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130. https://doi.org/10.1016/j.molmet.2019.09.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reimann F, Gribble FM (2016) Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion. J Diabetes Investig 7(Suppl 1):13–19

CAS  PubMed  PubMed Central  Google Scholar 

Gorboulev V, Schürmann A, Vallon V et al (2012) Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61(1):187–196

CAS  PubMed  Google Scholar 

Baud G, Daoudi M, Hubert T et al (2016) Bile diversion in Roux-en-Y gastric bypass modulates sodium-dependent glucose intestinal uptake. Cell Metab 23(3):547–553

CAS  PubMed  Google Scholar 

Kuhre RE, Frost CR, Svendsen B, Holst JJ (2015) Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 64(2):370–382

CAS  PubMed  Google Scholar 

Lejeune MPGM, Westerterp KR, Adam TCM, Luscombe-Marsh ND, Westerterp-Plantenga MS (2006) Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am J Clin Nutr 83(1):89–94

CAS  PubMed  Google Scholar 

Ekberg JH, Hauge M, Kristensen LV et al (2016) GPR119, a major enteroendocrine sensor of dietary triglyceride metabolites coacting in synergy with FFA1 (GPR40). Endocrinology 157(12):4561–4569

CAS  PubMed  Google Scholar 

Hansen M, Scheltema MJ, Sonne DP et al (2016) Effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon-like peptide-1 secretion. Diabetes Obes Metab 18(6):571–580

CAS  PubMed  Google Scholar 

Nielsen S, Svane MS, Kuhre RE et al (2017) Chenodeoxycholic acid stimulates glucagon-like peptide-1 secretion in patients after Roux-en-Y gastric bypass. Physiol Rep 5(3):e13140

PubMed  PubMed Central  Google Scholar 

Goldspink DA, Lu VB, Billing LJ et al (2018) Mechanistic insights into the detection of free fatty and bile acids by ileal glucagon-like peptide-1 secreting cells. Mol Metab 7:90–101

CAS  PubMed  Google Scholar 

Kuhre RE, Wewer Albrechtsen NJ, Larsen O et al (2018) Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol Metab 11:84–95

CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Marcelin G, Blouet C et al (2018) A gut-brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus. Mol Metab 8:37–50. https://doi.org/10.1016/j.molmet.2017.12.003

Article  CAS  PubMed  Google Scholar 

Tomlinson E et al (2002) Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143:1741–1747

CAS  PubMed  Google Scholar 

Lan T, Morgan DA, Rahmouni K et al (2017) FGF19, FGF21, and an FGFR1/ b-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab 26:709-718.e3

CAS  PubMed  PubMed Central  Google Scholar 

Marcelin G, Jo YH, Li X et al (2013) Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab 3(1):19–28. https://doi.org/10.1016/j.molmet.2013.10.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomlinson E, Fu L, John L et al (2002) Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143(5):1741–1747. https://doi.org/10.1210/endo.143.5.8850

Article  CAS  PubMed  Google Scholar 

Bozadjieva N, Heppner KM, Seeley RJ (2018) Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes 67(9):1720–1728. https://doi.org/10.2337/dbi17-0007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang Q, Li H, Song Q et al (2013) Serum fibroblast growth factor 19 levels are decreased in Chinese subjects with impaired fasting glucose and inversely associated with fasting plasma glucose levels. Diabetes Care 36(9):2810–2814. https://doi.org/10.2337/dc12-1766

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS et al (2012) Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun 427:600–605. https://doi.org/10.1016/j.bbrc.2012.09.104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng C, Zhou W, Wang T, You P, Zhao Y, Yang Y et al (2015) A novel TGR5 activator WB403 promotes GLP-1 secretion and preserves pancreatic β-cells in type 2 diabetic mice. PLoS ONE 10:e0134051. https://doi.org/10.1371/journal.pone.0134051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finn PD, Rodriguez D, Kohler J et al (2019) Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice. Am J Physiol-Gastrointest Liver Physiol 316(3):G412–G424. https://doi.org/10.1152/ajpgi.00300.2018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light- chain enhancer of activated B cells (NF-κB) in mice. Hepatology 54:1421–1432. https://doi.org/10.1002/hep.24525

Article 

Comments (0)

No login
gif