Investigating Predictors of Student Performance in STEM Using Educational Data Mining Techniques

Affuso, G., Zannone, A., Esposito, C., Pannone, M., Miranda, M. C., De Angelis, G., Aquilar, S., Dragone, M., & Bacchini, D. (2022). The effects of teacher support, parental monitoring, motivation and self-efficacy on academic performance over time. European Journal of Psychology of Education, 38. https://doi.org/10.1007/s10212-021-00594-6

Aksu, N., Aksu, G., & Saracaloglu, S. (2022). Prediction of the factors affecting PISA mathematics literacy of students from different countries by using data mining methods. International Electronic Journal of Elementary Education, 14(5), 613–629. https://iejee.com/index.php/IEJEE/article/view/1757. Accessed 4 May 2024

AlQuraishi, M. (2019). ProteinNet: a standardized data set for machine learning of protein structure. BMC Bioinformatics, 20(1). https://doi.org/10.1186/s12859-019-2932-0

Alshehri, E., Alhakami, H., Baz, A., & Alsubait, T. (2020). A comparison of EDM tools and techniques. International Journal of Advanced Computer Science and Applications, 11(12). https://doi.org/10.14569/ijacsa.2020.0111295

Armor, D. J., Marks, G. N., & Malatinszky, A. (2018). The impact of school SES on student achievement: Evidence from U.S. statewide achievement data. Educational Evaluation and Policy Analysis, 40(4), 613–630. https://doi.org/10.3102/0162373718787917

Aydin, M. (2020). Does the digital divide matter? Factors and conditions that promote ICT literacy. Telematics and Informatics, 58, 101536. https://doi.org/10.1016/j.tele.2020.101536

Article  Google Scholar 

Baker, R., & Kalina Yacef. (2009). The state of educational data mining in 2009: A review and future visions. ResearchGate, 1(1), 3–17. https://www.researchgate.net/publication/256309431. Accessed 5 June 2025

Bakhshinategh, B., Zaiane, O. R., ElAtia, S., & Ipperciel, D. (2017). Educational data mining applications and tasks: A survey of the last 10 years. Education and Information Technologies, 23(1), 537–553. https://doi.org/10.1007/s10639-017-9616-z

Article  Google Scholar 

Bashir, A., Bashir, S., Rana, K., Lambert, P., & Vernallis, A. (2021). Post-COVID-19 Adaptations; the Shifts towards online learning, hybrid course delivery and the implications for Biosciences courses in the higher education setting. Frontiers in Education, 6(1). https://doi.org/10.3389/feduc.2021.711619

Bezek Güre, Ö., Kayri, M., & Erdoğan, F. (2020). Analysis of factors affecting PISA 2015 mathematics literacy via educational data mining. TED EĞİTİM ve BİLİM, 45. https://doi.org/10.15390/eb.2020.8477

Bousbia, N., & Belamri, I. (2013). Which contribution does EDM provide to computer-based learning environments? Educational Data Mining, 3–28. https://doi.org/10.1007/978-3-319-02738-8_1

Broer, M., Bai, Y., & Fonseca, F. (2019). A review of the literature on socioeconomic status and educational achievement. IEA Research for Education, 5(2), 7–17

Google Scholar 

Bronfenbrenner, U. (1977). Toward an experimental ecology of human development. American Psychologist, 32(7), 513–531. https://doi.org/10.1037/0003-066x.32.7.513

Article  Google Scholar 

Bronfenbrenner, U. (1992). Ecological systems theory. Psycnet.apa.org. https://psycnet.apa.org/record/1992-98662-005. Accessed 12 March 2024

Campbell, C. (2020). Educational equity in Canada: the case of Ontario’s strategies and actions to advance excellence and equity for students. School Leadership & Management, 41(4-5), 1–20. https://doi.org/10.1080/13632434.2019.1709165

Article  Google Scholar 

Chen, F., & Cui, Y. (2020). Utilizing student time series behaviour in learning management systems for early prediction of course performance. Journal of Learning Analytics, 7(2), 1–17. https://doi.org/10.18608/jla.2020.72.1

Chen, F., Sakyi, A., & Cui, Y. (2022). Identifying key contextual factors of digital reading literacy through a machine learning approach. Journal of Educational Computing Research, 073563312210832. https://doi.org/10.1177/07356331221083215

CMEC. (2020). Canadian results from the Trends in International Mathematics and Science Study (TIMSS) 2019. CMEC. https://www.cmec.ca/Publications/Lists/Publications/Attachments/417/TIMSS19_Report_EN.pdf. Accessed 20 April 2024

Cui, Y., Zhang, D., & Leung, F. K. S. (2019). The influence of parental educational involvement in early childhood on 4th grade students’ mathematics achievement. Early Education and Development, 32(1), 1–21. https://doi.org/10.1080/10409289.2019.1677131

Article  Google Scholar 

Dabhade, P., Agarwal, R., Alameen, K. P., Fathima, A. T., Sridharan, R., & Gopakumar, G. (2021). Educational data mining for predicting students’ academic performance using machine learning algorithms. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.646

Destin, M., Hanselman, P., Buontempo, J., Tipton, E., & Yeager, D. S. (2019). Do student mindsets differ by socioeconomic status and explain disparities in academic achievement in the United States? AERA Open, 5(3), 1–12. https://doi.org/10.1177/2332858419857706

Article  Google Scholar 

Dettmers, S., Yotyodying, S., & Jonkmann, K. (2019). Antecedents and outcomes of parental homework involvement: How do family-school partnerships affect parental homework involvement and student outcomes? Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01048

Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining. IEEE Access, 5, 15991–16005. https://doi.org/10.1109/access.2017.2654247

Article  Google Scholar 

El Said, G. R. (2021). How did the COVID-19 pandemic affect higher education learning experience? an empirical investigation of learners’ academic performance at a University in a Developing Country. Advances in Human-Computer Interaction, 2021(1), 1–10. https://doi.org/10.1155/2021/6649524

Article  Google Scholar 

El Zaatari, W., & Maalouf, I. (2022). How the Bronfenbrenner bio-ecological system theory explains the development of students’ sense of belonging to school? SAGE Open, 12(4), 1–18. https://doi.org/10.1177/21582440221134089

Article  Google Scholar 

Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(1). https://journalofbigdata.springeropen.com/articles/ https://doi.org/10.1186/s40537-021-00516-9

Erdogdu, F., & Erdogdu, E. (2015). The impact of access to ICT, student background and school/home environment on academic success of students in Turkey: An international comparative analysis. Computers & Education, 82, 26–49. https://doi.org/10.1016/j.compedu.2014.10.023

Article  Google Scholar 

Espinosa-Pinos, C. A., Ayala-Chauvín, I., & Buele, J. (2022). Predicting academic performance in mathematics using machine learning algorithms. Communications in Computer and Information Science, 15–29. https://doi.org/10.1007/978-3-031-19961-5_2

Etherton, K., Steele-Johnson, D., Salvano, K., & Kovacs, N. (2020). Resilience effects on student performance and well-being: the role of self-efficacy, self-set goals, and anxiety. The Journal of General Psychology, 149(3), 1–20. https://doi.org/10.1080/00221309.2020.1835800

Article  Google Scholar 

Fan, Z., & Lauren J, O. (2020). Support vector regression. Machine Learning, 123–140. https://doi.org/10.1016/B978-0-12-815739-8.00007-9

Filippi, R., Ceccolini, A., Perry, R. C., & Thomas, M. S. C. (2024). The impact of multilingualism and socio-economic status on academic performance: evidence from the SCAMP and the national pupil databases. International Journal of Bilingual Education and Bilingualism, 28(1), 1–20. https://doi.org/10.1080/13670050.2024.2397445

Article  Google Scholar 

Foreman, J. L., & Gubbins, E. J. (2014). Teachers see what ability scores cannot. Journal of Advanced Academics, 26(1), 5–23. https://doi.org/10.1177/1932202x14552279

Article  Google Scholar 

Gamage, K. A. A., Ekanayake, S. Y., & Dehideniya, S. C. P. (2022). Embedding sustainability in learning and teaching: Lessons learned and moving forward—Approaches in STEM higher education programmes. Education Sciences, 12(3), 225. https://doi.org/10.3390/educsci12030225

Article  Google Scholar 

Gülhan, F. (2023). Parental involvement in STEM education: A systematic literature review. European Journal of STEM Education, 8(1), 05–05. https://doi.org/10.20897/ejsteme/13506

He, L., Levine, R. A., Bohonak, A. J., Fan, J., & Stronach, J. (2018). Predictive analytics machinery for STEM student success studies. Applied Artificial Intelligence, 32(4), 361–387. https://doi.org/10.1080/08839514.2018.1483121

Article  Google Scholar 

Hynie, M. (2017). The social determinants of refugee mental health in the post-migration context: A Critical Review. The Canadian Journal of Psychiatry, 63(5), 297–303. https://doi.org/10.1177/0706743717746666

Article  Google Scholar 

IEA. (2020). IEA Research for education series | IEA.nl. Www.iea.nl. https://www.iea.nl/publications/seriesjournals/iea-research-education

Keser Aschenberger, F., Radinger, G., Brachtl, S., Ipser, C., & Oppl, S. (2022). Physical home learning environments for digitally-supported learning in academic continuing education during COVID-19 pandemic. Learning Environments Research, 26, 1–31. https://doi.org/10.1007/s10984-022-09406-0

Article  Google Scholar 

Khan, A., & Ghosh, S. K. (2020). Student performance analysis and prediction in classroom learning: A review of educational data mining studies. Education and Information Technologies. https://doi.org/10.1007/s10639-020-10230-3

Article  Google Scholar 

Kigo, S. N., Omondi, E. O., & Omolo, B. O. (2023). Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-44326-w

Larochelle-Audet, J., Magnan, M.-O., Potvin, M., & Doré, E. (2019). Comparative and critical analysis of competency standards for school principals: Towards an inclusive and equity perspective in Québec. Education Policy Analysis Archives, 27, 112. https://doi.org/10.14507/epaa.27.4217

Li, X., Yang, H., Wang, H., & Jia, J. (2020). Family socioeconomic status and home-based parental involvement: A mediation analysis of parental attitudes and expectations. Children and Youth Services Review, 116, 105111. https://doi.org/10.1016/j.childyouth.2020.105111

Article  Google Scholar 

Li, H., Xiao, B., & Song, G. (2024). The impact of family socioeconomic status (SES) on adolescents’ learning conformity: The mediating effect of self-esteem. Children, 11(5), 540–540. https://doi.org/10.3390/children11050540

Article  Google Scholar 

Liu, Y., Wang, Y., & Zhang, J. (2012). New machine learning algorithm: Random forest. Information Computing and Applications, 7473, 246–252. https://doi.org/10.1007/978-3-642-34062-8_32

Article  Google Scholar 

Martin, A. J., & Lazendic, G. (2018). Achievement in large-scale national numeracy assessment: An ecological study of motivation and student, home, and school predictors. Journal of Educational Psychology, 110(4), 465–482. https://doi.org/10.1037/edu0000231

Article  Google Scholar 

McDonald, C. V. (2016). STEM Education: A review of the contribution of the disciplines of science, technology, engineering and mathematics. Science Education International, 27(4), 530–569. https://eric.ed.gov/?id=EJ1131146. Accessed 15 Dec 2024

Nagy, M., & Molontay, R. (2018, June 1). Predicting Dropout in Higher Education Based on Secondary School Performance. IEEE Xplore. https://doi.org/10.1109/INES.2018.8523888

Namoun, A., & Alshanqiti, A. (2020). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. Applied Sciences, 11(1), 237. https://doi.org/10.3390/app11010237

Article  Google Scholar 

Nguyen, H., & Bui, X.-N. (2018). Predicting blast-induced air verpressure: A robust artificial intelligence system based on artificial neural networks and random forest. Natural Resources Research, 28(3), 893–907. https://doi.org/10.1007/s11053-018-9424-1

Article  Google Scholar 

OECD. (2022). PISA 2022: Mathematics Framework. Pisa2022-Maths.oecd.org. https://pisa2022-maths.oecd.org/ca/index.html

OECD. (2023a). PISA 2022 Results (Volume I). OECD. https://www.oecd.org/en/publications/pisa-2022-results-volume-i_53f23881-en.html because the results of PISA 2022 were publishedby OECD, the organizers of PISA 2022 assessments.

OECD. (2023b). PISA: Programme for International Student Assessment. OECD. https://www.oecd.org/en/about/programmes/pisa.html

Okewu, E., Adewole, P., Misra, S., Maskeliunas, R., & Damasevicius, R. (2021). Artificial neural networks for educational data mining in higher education: A systematic literature review. Applied Artificial Intelligence, 35(13), 983–1021. https://doi.org/10.1080/08839514.2021.1922847

Article  Google Scholar 

Otchere, D. A., Arbi Ganat, T. O., Gholami, R., & Ridha, S. (2021). Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models. Journal of Petroleum Science and Engineering, 200, 108182. https://doi.org/10.1016/j.petrol.2020.108182

Article  Google Scholar 

Pérez, B., Castellanos, C., & Correal, D. (2018). Predicting student drop-out rates using data mining techniques: A case study. Applications of Computational Intelligence, 111–125. https://doi.org/10.1007/978-3-030-03023-0_10

Probst, P., Wright, M. N., & Boulesteix, A. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3). https://doi.org/10.1002/widm.1301

Rigatti, S. J. (2017). Random Forest. Journal of Insurance Medicine, 47(1), 31–39.

Comments (0)

No login
gif