Adebayo, J., Gilmer, J., Muelly, M., et al. (2018). Sanity Checks for Saliency Maps. publication Title: ADS Bibcode: 2018arXiv181003292A arXiv1810.03292
Adhikari, S., Choudhury, N., Bhattacharya, S., et al. (2025). Analysis of frequency domain features for the classification of evoked emotions using EEG signals. Experimental Brain Research, 243(3), 65. https://doi.org/10.1007/s00221-025-07002-1
Article PubMed PubMed Central Google Scholar
Aggarwal, S., & Chugh, N. (2022). Review of Machine Learning Techniques for EEG Based Brain Computer Interface. Archives of Computational Methods in Engineering, 29(5), 3001–3020. https://doi.org/10.1007/s11831-021-09684-6
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
Chiarion, G., Sparacino, L., Antonacci, Y., et al. (2023). Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering, 10(3), 372. https://doi.org/10.3390/bioengineering10030372
Article PubMed PubMed Central Google Scholar
Craik, A., He, Y., & Contreras-Vidal, J. L. (2019). Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of Neural Engineering,16(3), Article 031001. https://doi.org/10.1088/1741-2552/ab0ab5
Dissanayaka, C., Ben-Simon, E., Gruberger, M., et al. (2015). Comparison between human awake, meditation and drowsiness EEG activities based on directed transfer function and MVDR coherence methods. Medical & Biological Engineering & Computing, 53(7), 599–607. https://doi.org/10.1007/s11517-015-1272-0
Duan, RN., Zhu, JY., Lu, BL. (2013). Differential entropy feature for EEG-based emotion classification. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 81–84, https://doi.org/10.1109/NER.2013.6695876, iSSN: 1948-3554
Ellis, C. A., Sancho, M. L., Miller, R. L., et al. (2024). Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures. https://doi.org/10.1101/2024.03.19.585728
Ermolova, M., Metsomaa, J., Zrenner, C., et al. (2021). Spontaneous phase-coupling within cortico-cortical networks: How time counts for brain-state-dependent stimulation. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 14(2), 404–406. https://doi.org/10.1016/j.brs.2021.02.007, publisher: Elsevier
Farahat, A., Reichert, C., Sweeney-Reed, C. M., et al. (2019). Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization. Journal of Neural Engineering,16(6), Article 066010. https://doi.org/10.1088/1741-2552/ab3bb4
Friston, K., Moran, R., & Seth, A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Current Opinion in Neurobiology, 23(2), 172–178. https://doi.org/10.1016/j.conb.2012.11.010
Article CAS PubMed PubMed Central Google Scholar
Fu, Z., Du, Y., & Calhoun, V. D. (2019). The Dynamic Functional Network Connectivity Analysis Framework. Engineering (Beijing, China), 5(2), 190–193. https://doi.org/10.1016/j.eng.2018.10.001
Gemein, L. A., Schirrmeister, R. T., Chrabaszcz, P., et al. (2020). Machine-learning-based diagnostics of EEG pathology. NeuroImage,220, Article 117021. https://doi.org/10.1016/j.neuroimage.2020.117021
Geng, B., Liu, K., Duan, Y., et al. (2020). A Novel EEG Based Directed Transfer Function for Investigating Human Perception to Audio Noise. In: 2020 International Wireless Communications and Mobile Computing (IWCMC), pp. 923–928, https://doi.org/10.1109/IWCMC48107.2020.9148468, iSSN: 2376-6506
Gjølbye, A., Lehn-Schiøler, W., Jónsdóttir, A., et al. (2024). Concept-based explainability for an EEG transformer model. ArXiv:2307.12745 [cs, eess, stat]
Goldberger, A. L., Amaral, L. A., Glass, L., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), E215-220. https://doi.org/10.1161/01.cir.101.23.e215
Article CAS PubMed Google Scholar
Hövel, P., Viol, A., Loske, P., et al. (2020). Synchronization in Functional Networks of the Human Brain. Journal of Nonlinear Science,30(5), 2259–2282. https://doi.org/10.1007/s00332-018-9505-7
Hussain, I., Jany, R., Boyer, R., et al. (2023). An Explainable EEG-Based Human Activity Recognition Model Using Machine-Learning Approach and LIME. Sensors (Basel, Switzerland), 23(17), 7452. https://doi.org/10.3390/s23177452
Article CAS PubMed Google Scholar
Hutchison, R. M., Womelsdorf, T., Allen, E. A., et al. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360–378. https://doi.org/10.1016/j.neuroimage.2013.05.079
Ieracitano, C., Mammone, N., Hussain, A., et al. (2022). A novel explainable machine learning approach for EEG-based brain-computer interface systems. Neural Computing and Applications, 34(14), 11347–11360. https://doi.org/10.1007/s00521-020-05624-w
Köllőd, C. M., Adolf, A., Iván, K., et al. (2023). Deep Comparisons of Neural Networks from the EEGNet Family. Electronics,12(12), 2743. https://doi.org/10.3390/electronics12122743
Lachaux, J., Rodriguez, E., Martinerie, J., et al. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping,8(4), 194–208. https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
Lawhern, V. J., Solon, A. J., Waytowich, N. R., et al. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering,15(5), Article 056013. https://doi.org/10.1088/1741-2552/aace8c
Lopes, M., Cassani, R., & Falk, T. H. (2023). Using CNN Saliency Maps and EEG Modulation Spectra for Improved and More Interpretable Machine Learning-Based Alzheimer’s Disease Diagnosis. Computational Intelligence and Neuroscience,2023, 3198066. https://doi.org/10.1155/2023/3198066
Lynn, C. W., & Bassett, D. S. (2019). The physics of brain network structure, function and control. Nature Reviews Physics, 1(5), 318–332. https://doi.org/10.1038/s42254-019-0040-8
Mortier, S., Turkeš, R., De Winne, J., et al. (2023). Classification of Targets and Distractors in an Audiovisual Attention Task Based on Electroencephalography. Sensors, 23(23), 9588. https://doi.org/10.3390/s23239588
Article PubMed PubMed Central Google Scholar
Panwar, S., Joshi, S. D., Gupta, A., et al. (2021). Recursive dynamic functional connectivity reveals a characteristic correlation structure in human scalp EEG. Scientific Reports, 11(1), 2822. https://doi.org/10.1038/s41598-021-81884-3, publisher: Nature Publishing Group
Pester, B., Ligges, C. (2018). Does independent component analysis influence EEG connectivity analyses? In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Honolulu, HI, pp. 1007–1010, https://doi.org/10.1109/EMBC.2018.8512425
Phan, A. T., Xie, W., Chapeton, J. I., et al. (2024). Dynamic patterns of functional connectivity in the human brain underlie individual memory formation. Nature Communications, 15(1), 8969. https://doi.org/10.1038/s41467-024-52744-1, publisher: Nature Publishing Group
Prabowo, D. W., Nugroho, H. A., Setiawan, N. A., et al. (2023). A systematic literature review of emotion recognition using EEG signals. Cognitive Systems Research,82, Article 101152. https://doi.org/10.1016/j.cogsys.2023.101152
Roy, Y., Banville, H., Albuquerque, I., et al. (2019). Deep learning-based electroencephalography analysis: a systematic review. Journal of Neural Engineering,16(5), Article 051001. https://doi.org/10.1088/1741-2552/ab260c
Saeidi, M., Karwowski, W., Farahani, F. V., et al. (2021). Neural Decoding of EEG Signals with Machine Learning: A Systematic Review. Brain Sciences, 11(11), 1525. https://doi.org/10.3390/brainsci11111525
Article PubMed PubMed Central Google Scholar
Salami, A., Andreu-Perez, J., & Gillmeister, H. (2022). EEG-ITNet: An Explainable Inception Temporal Convolutional Network for Motor Imagery Classification. IEEE Access, 10, 36672–36685. https://doi.org/10.1109/ACCESS.2022.3161489
Schalk, G., McFarland, DJ., Hinterberger, T., et al. (2009). EEG Motor Movement/Imagery Dataset. https://doi.org/10.13026/C28G6P
Schalk, G., McFarland, D., Hinterberger, T., et al. (2004). BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions on Biomedical Engineering, 51(6), 1034–1043. https://doi.org/10.1109/TBME.2004.827072
Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., et al. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping, 38(11), 5391–5420. https://doi.org/10.1002/hbm.23730
Seth, A. K., Barrett, A. B., & Barnett, L. (2015). Granger Causality Analysis in Neuroscience and Neuroimaging. Journal of Neuroscience, 35(8), 3293–3297. https://doi.org/10.1523/JNEUROSCI.4399-14.2015
Article CAS PubMed Google Scholar
Shaw, S. B., McKinnon, M. C., Heisz, J., et al. (2021). Dynamic task-linked switching between brain networks – A tri-network perspective. Brain and Cognition,151, Article 105725. https://doi.org/10.1016/j.bandc.2021.105725
Sujatha Ravindran, A., & Contreras-Vidal, J. (2023). An empirical comparison of deep learning explainability approaches for EEG using simulated ground truth. Scientific Reports, 13, 17709. https://doi.org/10.1038/s41598-023-43871-8
Article CAS PubMed PubMed Central Google Scholar
Šverko, Z., Vlahinić, S., & Rogelj, P. (2024). A Framework for Evaluating Dynamic Directed Brain Connectivity Estimation Methods Using Synthetic EEG Signal Generation. Algorithms, 17(11), 517. https://doi.org/10.3390/a17110517, number: 11 Publisher: Multidisciplinary Digital Publishing Institute
Šverko Z, Vrankić M, Vlahinić S, et al (2022a) Complex Pearson Correlation Coefficient for EEG Connectivity Analysis. Sensors (Basel, Switzerland) 22(4):1477. https://doi.org/10.3390/s22041477
Šverko Z, Vrankic M, Vlahinić S, et al (2022b) Dynamic Connectivity Analysis Using Adaptive Window Size. Sensors 22(14):5162. https://doi.org/10.3390/s22145162
Vinck, M., Oostenveld, R., van Wingerden, M., et al. (2011). An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage, 55(4), 1548–1565. https://doi.org/10.1016/j.neuroimage.2011.01.055
Wang, H., Yang, K., Zhang, J., et al. (2024). Explain EEG-based End-to-end Deep Learning Models in the Frequency Domain
Wang, H., Zhu, X., Chen, T., et al. (2022). Rethinking Saliency Map: An Context-aware Perturbation Method to Explain EEG-based Deep Learning Model. ArXiv:2205.14976 [cs, eess]
Wang, J., & Wang, M. (2021). Review of the emotional feature extraction and classification using EEG signals. Cognitive Robotics, 1, 29–40. https://doi.org/10.1016/j.cogr.2021.04.001
Winterhalder, M., Schelter, B., Hesse, W., et al. (2005). Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems. Signal Processing, 85(11), 2137–2160. https://doi.org/10.1016/j.sigpro.2005.07.011
Yang, G., & Liu, J. (2024). A novel multi-scale fusion convolutional neural network for EEG-based motor imagery classification. Biomedical Signal Processing and Control,96, Article 106645. https://doi.org/10.1016/j.bspc.2024.106645
Zhao, W., Jiang, X., Zhang, B., et al. (2024). CTNet: a convolutional transformer network for EEG-based motor imagery classification. Scientific reports, 14(1), 20237. https://doi.org/10.1038/s41598-024-71118-7
Article CAS PubMed PubMed Central Google Scholar
Zheng, W. L., & Lu, B. L. (2015). Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Transactions on Autonomous Mental Development, 7(3), 162–175. https://doi.org/10.1109/TAMD.2015.2431497, conference Name: IEEE Transactions on Autonomous Mental Development
Comments (0)