Altmann, A., Toloşi, L., Sander, O., & Lengauer, T. (2010). Permutation importance: a corrected feature importance measure. Bioinformatics, 26(10), 1340–1347. https://doi.org/10.1093/bioinformatics/btq134
Article CAS PubMed Google Scholar
Arnsten, A. F. T., & Rubia, K. (2012). Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 51(4), 356–367. https://doi.org/10.1016/j.jaac.2012.01.008
Piani, M.C., Maggioni, E., Delvecchio, G., Brambilla, P. (2022). Sustained attention alterations in major depressive disorder: a review of fmri studies employing go/no-go and cpt tasks. Journal of Affective Disorders, 303, 98–113. https://doi.org/10.1016/j.jad.2022.02.003
Bessadok, A., Mahjoub, M. A., & Rekik, I. (2022). Graph neural networks in network neuroscience. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 5833–5848. https://doi.org/10.1109/TPAMI.2022.3209686
Yang, H., Chen, X., Chen, Z.B., Li, L., Du, L., Zhang, Y., Gong, Q., Luo, Y. (2021). Disrupted intrinsic functional brain topology in patients with major depressive disorder. Molecular Psychiatry, 26(12), 7363–7371. https://doi.org/10.1038/s41380-021-01247-2
Bi, X., Zhao, X., Huang, H., Liu, Y., Wang, Z., Zhang, Y., Zhang, Z., Zhou, Y., Sun, X., Yang, Y., & Liu, Z. (2020). Functional brain network classification for alzheimer’s disease detection with deep features and extreme learning machine. Cognitive Computation, 12(3), 513–527. https://doi.org/10.1007/s12559-019-09688-2
Dadi, K., Rahim, M., Abram, A., Blazejewska, A., Kucian, K., Weigand, A., Rashid, B., Nomi, J.S., Uddin, L.Q., Sarrami-Foroushani, P., Jahanshad, N., Schmaal, L., Varoquaux, G., Yeo, B.T.T., Hahamy, A., Fair, D., Greicius, M., Leemans, A., Raemaekers, M., Milham, M.P., Thirion, B., Engelhardt, B., Blanche, P., Guye, M., Eickhoff, S.B., Kremen, W.S., Paus, T., Razi, A., Toro, R., Fornito, A., Arslan, S. (2019). Benchmarking functional connectome-based predictive models for resting-state fmri. NeuroImage, 192, 115–134. https://doi.org/10.1016/j.neuroimage.2019.02.062
Cao, R., Wang, X., Gao, Y., Li, T., Zhang, H., Hussain, W., Xie, Y., Wang, J., Wang, B., & Xiang, J. (2020). Abnormal anatomical rich-club organization and structural-functional coupling in mild cognitive impairment and alzheimer’s disease. Frontiers in Neurology, 11, 53. https://doi.org/10.3389/fneur.2020.00053
Article PubMed PubMed Central Google Scholar
Cheng, W., et al. (2018). Increased functional connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression. Translation Psychiatry, 8(1), 1–10. https://doi.org/10.1038/s41398-018-0139-1
Bhaumik, R., Jenkins, L.M., Gowins, J.R., Jacobs, R.H., Towler, S., Boettiger, C., Gotlib, I.H., Joormann, J., Knodt, A.R., Knutson, B., Lindquist, K., Lucas, R.E., McTeague, L.M., Paul, E.J., Sankin, L.S., Strauman, T.J., Zucker, N.L., Smoski, M.J. (2017). Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity. NeuroImage: Clinical, 16, 390–398. https://doi.org/10.1016/j.neuroimage.2019.02.062
Dadi, K., Rahim, M., Abram, A., Blazejewska, A., Kucian, K., Weigand, A., Rashid, B., Nomi, J. S., Uddin, L. Q., Sarrami-Foroushani, P., Jahanshad, N., Schmaal, L., Varoquaux, G., Yeo, B. T. T., Hahamy, A., Fair, D., Greicius, M., Leemans, A., Raemaekers, M., … Arslan, S. (2019). Benchmarking functional connectome-based predictive models for resting-state fmri. NeuroImage, 192, 115–134. https://doi.org/10.1016/j.neuroimage.2019.02.062
Dai, P., Wang, X., Liu, Y., Lei, X., Yang, Y., & Zuo, X. (2023). Classification of recurrent major depressive disorder using a new time series feature extraction method through multisite rs-fmri data. Journal of Affective Disorders, 339, 511–519. https://doi.org/10.1016/j.jad.2023.07.077
Dai, P., Wang, X., Liu, Y., Lei, X., Yang, Y., & Zuo, X. (2025). Using effective connectivity-based predictive modeling to predict mdd scale scores from multisite rs-fmri data. Journal of Neuroscience Methods, 417, Article 110406. https://doi.org/10.1016/j.jneumeth.2025.110406
Ding, Y.-D., Yang, R., Yan, C.-G., Chen, X., Bai, T.-J., Bo, Q.-J., Chen, G.-M., Chen, N.-X., Chen, T.-L., Chen, W., Cheng, C., Cheng, Y.-Q., Cui, X.-L., Duan, J., Fang, Y.-R., Gong, Q.-Y., Hou, Z.-H., Hu, L., Kuang, L., & Li, F. (2021). Disrupted hemispheric connectivity specialization in patients with major depressive disorder: Evidence from the rest-meta-mdd project. Journal of Affective Disorders, 284, 217–228. https://doi.org/10.1016/j.jad.2021.02.030
Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., Nelson, S. M., Wig, G. S., Vogel, A. C., Lessov-Schlaggar, C. N., Barnes, K. A., Dubis, J. W., Feczko, E., Coalson, R. S., Pruett, J. R., Barch, D. M., Petersen, S. E., & Schlaggar, B. L. (2010). Prediction of individual brain maturity using fmri. Science, 329(5997), 1358–1361. https://doi.org/10.1126/science.1194144
Article CAS PubMed PubMed Central Google Scholar
Durstewitz, D., Koppe, G., & Meyer-Lindenberg, A. (2019). Deep neural networks in psychiatry. Molecular psychiatry, 24(11), 1583–1598. https://doi.org/10.1038/s41380-019-0365-9
Friedman, N. P., & Robbins, T. W. (2021). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology, 47(47), 1–18. https://doi.org/10.1038/s41386-021-01132-0
Gallo, S., El-Gazzar, A., Zhutovsky, P., Hahn, T., Goerigk, S., Brakowski, J., Sommer, J., Soares, J. M., Marques, P., Sousa, N., Veer, I. M., Van Tol, M.-J., Penninx, B., Zitman, F., Wee, N. J. A., El-Hage, W., Langenecker, S., Hecht, D., Verma, G., … Walter, H. (2023). Functional connectivity signatures of major depressive disorder: Machine learning analysis of two multicenter neuroimaging studies. Molecular psychiatry, 28, 3013–3022. https://doi.org/10.1038/s41380-023-01977-5
Article PubMed PubMed Central Google Scholar
Grimm, S., Beck, J., Schuepbach, D., et al. (2008). Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: An fmri study in severe major depressive disorder. Biological Psychiatry, 63(4), 369–376. https://doi.org/10.1016/j.biopsych.2007.05.033
Marek, S., Tervo-Clemmens, B., Calabro, F.J., Montez, D.F., Kay, B.P., Hatoum, A.S., Donohue, M.R., Foran, W., Miller, R.L., Feczko, E., et al. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9
Gu, Y., Peng, S., Li, Y., Gao, L., & Dong, Y. (2025). Fc-hgnn: A heterogeneous graph neural network based on brain functional connectivity for mental disorder identification. Information Fusion, 113, Article 102619. https://doi.org/10.1016/j.inffus.2024.102619
Grover, A., Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp. 855–864). Association for Computing Machinery, ??? . https://doi.org/10.1145/2939672.2939754
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y. (2017). Graph attention networks. arXiv https://doi.org/10.48550/arXiv.1710.10903
Ho, T. C., et al. (2017). Inflexible functional connectivity of the dorsal anterior cingulate cortex in adolescent major depressive disorder. Neuropsychopharmacology, 42(12), 2434–2445. https://doi.org/10.1038/npp.2017.103
Article PubMed PubMed Central Google Scholar
Kawahara, J., Brown, C. J., Miller, S. P., Booth, B. G., Chau, V., Poskitt, K. J., Branson, H. M., & Hamarneh, G. (2017). Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage, 146, 1038–1049. https://doi.org/10.1016/j.neuroimage.2016.09.046
Keedwell, P. A., Andrew, C., Williams, S. C. R., Brammer, M. J., & Phillips, M. L. (2005). The neural correlates of anhedonia in major depressive disorder. Biological Psychiatry, 58(11), 843–853. https://doi.org/10.1016/j.biopsych.2005.05.019
Yan, C. (2010). Dparsf: A matlab toolbox for ‘pipeline’ data analysis of resting-state fmri. Frontiers in Systems Neuroscience , 4, 1377. https://doi.org/10.3389/fnsys.2010.00013
Dosenbach, N.U.F., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J.A., Nelson, S.M., Wig, G.S., Vogel, A.C., Lessov-Schlaggar, C.N., Barnes, K.A., Dubis, J.W., Feczko, E., Coalson, R.S., Pruett, J.R., Barch, D.M., Petersen, S.E., Schlaggar, B.L. (2010). Prediction of individual brain maturity using fmri. Science, 329(5997), 1358–1361. https://doi.org/10.1126/science.1194144
Wang, R., Li, Y., Zhang, J., Zhang, J., Zhao, Y., Yao, Z., Lu, Q. (2020). Topological reorganization of brain functional networks in patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes. NeuroImage: Clinical, 28, 102480. https://doi.org/10.1016/j.nicl.2020.102480
Lim, G. Y., Tam, W. W., Lu, Y., Ho, C. S., Zhang, M. W., & Ho, R. C. (2018). Prevalence of depression in the community from 30 countries between 1994 and 2014. Scientific Reports, 8(1), 2861. https://doi.org/10.1038/s41598-018-21243-x
Article CAS PubMed PubMed Central Google Scholar
Li, X., Zhou, Y., Dvornek, N. C., et al. (2021). Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis, 74, Article 102233. https://doi.org/10.1016/j.media.2021.102233
Article PubMed PubMed Central Google Scholar
Macpherson, T., & Hikida, T. (2019). Role of basal ganglia neurocircuitry in the pathology of psychiatric disorders. Psychiatry and Clinical Neurosciences, 73(6), 289–301. https://doi.org/10.1111/pcn.12830
Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran, W., Miller, R. L., Feczko, E., et al. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9
Article CAS PubMed PubMed Central Google Scholar
Mohanty, R., Sethares, W.A., Nair, V.A., Prabhakaran, V. (2020). Rethinking measures of functional connectivity via feature extraction. Scientific Reports, 10(1), 1298. https://doi.org/10.1038/s41598-020-57882-6
Mohanty, R., Sethares, W. A., Nair, V. A., & Prabhakaran, V. (2020). Rethinking measures of functional connectivity via feature extraction. Scientific Reports, 10(1), 1298. https://doi.org/10.1038/s41598-020-57882-6
Article CAS PubMed PubMed Central Google Scholar
Mulders, P. C., Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: A review. Neuroscience & Biobehavioral Reviews, 56, 330–344. https://doi.org/10.1016/j.neubiorev.2015.07.014
Noman, F., Ting, C. W., Kang, H., & Menache, A. (2024). Graph autoencoders for embedding learning in brain networks and major depressive disorder identification. IEEE Journal of Biomedical and Health Informatics, 28(3), 1644–1655. https://doi.org/10.1109/JBHI.2024.3351177
Comments (0)