Alzahrani, Y., & Boufama, B. (2021). Biomedical image segmentation: A survey. SN Computer Science, 2(4), 310. https://doi.org/10.1007/s42979-021-00704-7
Bass, C., et al. (2017). Detection of axonal synapses in 3d two-photon images. PloS one, 12(9), e0183309. https://doi.org/10.1371/journal.pone.0183309
Article CAS PubMed PubMed Central Google Scholar
Bokeh Development Team (2018). Bokeh: Interactive visualization library for python. https://bokeh.org
Bradski, G. (2000). The opencv library. In:Dr. Dobb’s Journal of Software Tools, (Available at: https://opencv.org/)
Bresenham, J.E. (1965) Algorithm for computer control of a digital plotter. In: IBM Systems Journal 41. Conference Name: IBM Systems Journal pp. 25–30. ISSN: 0018-8670. https://doi.org/10.1147/sj.41.0025.
Budde, M. D., & Frank, J. A. (2010). Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proceedings of the National Academy of Sciences, 107(32), 14472–14477. https://doi.org/10.1073/pnas.1004841107
Cauzzo, S., et al. (2024). A modular framework for multi-scale tissue imaging and neuronal segmentation. Nature Communications, 15(1), 4102. https://doi.org/10.1038/s41467-024-48146-y
Crum, W., et al. (2003). Zen and the art of medical image registration: correspondence, homology, and quality. NeuroImage, 20(3), 1425–1437, ISSN: 10538119 .https://doi.org/10.1016/j.neuroimage.2003.07.014
Datar, A., et al. (2019). The roles of microtubules and membrane tension in axonal beading, retraction, and atrophy. Biophysical Journal, 117(5), 880–891. https://doi.org/10.1016/j.bpj.2019.07.046
Dickstein, D. L. (2016). Automatic dendritic spine quantification from confocal data with neurolucida 360. Current Protocols in Neuroscience, 77(1), 1–27. https://doi.org/10.1002/cpns.16
Eberly, D. (1996) Ridges in image and data analysis. Red. by Max A. Viergever. Vol. 7. Computational Imaging and Vision. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-015-8765-5
El-Gamal, F. E., Elmogy, M., & Atwan, A. (2016). Current trends in medical image registration and fusion. Egyptian Informatics Journal, 17(1), 99–124. https://doi.org/10.1016/j.eij.2015.09.002
Fischer, R. S., et al. (2011). Microscopy in 3d: a biologist’s toolbox. Trends in Cell Biology, 21(12), 682–691. https://doi.org/10.1016/j.tcb.2011.09.008
Article CAS PubMed PubMed Central Google Scholar
Fraz, M., et al. (2012). Blood vessel segmentation methodologies in retinal images - a survey. Computer Methods and Programs in Biomedicine, 108(1), 407–433. https://doi.org/10.1016/j.cmpb.2012.03.009
Article CAS PubMed Google Scholar
Gomez-Deza, J., et al. (2023). Local production of reactive oxygen species drives vincristine-induced axon degeneration. Cell Death & Disease, 14(12), 1–13. https://doi.org/10.1038/s41419-023-06227-8
Griswold, J. M., et al. (2025). Membrane mechanics dictate axonal pearls-on-a-string morphology and function. Nature Neuroscience, 28(1), 49–61. https://doi.org/10.1038/s41593-024-01813-1
Article CAS PubMed Google Scholar
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. (2020). Array programming with numpy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2
Article CAS PubMed PubMed Central Google Scholar
Kaderuppan, S. S., Wong, E. W. L., Sharma, A., & Woo, W. L. (2020). Smart nanoscopy: A review of computational approaches to achieve super-resolved optical microscopy. IEEE Access, 8, 214801–214831. https://doi.org/10.1109/ACCESS.2020.3040319
Kaiser, G. (2011). A friendly guide to wavelets. Birkhäuser. https://doi.org/10.1007/978-0-8176-8111-1
Kilinc, D., Gallo, G., & Barbee, K. A. (2009). Interactive image analysis programs for quantifying injury-induced axonal beading and microtubule disruption. Computer Methods and Programs in Biomedicine, 95(1), 62–71. https://doi.org/10.1016/j.cmpb.2009.01.002
Lam, S.K., Pitrou, A., & Seibert, S. (2015). Numba: A llvm-based python jit compiler. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. https://doi.org/10.1145/2833157.2833162
Lee, G.R., et al. (2019). Pywavelets: A python package for wavelet transform. Journal of Open Source Software, 4(36), 1237. https://doi.org/10.21105/joss.01237
Li, Y., Qi, F., Wan, Y. (2019). Improvements On Bicubic Image Interpolation. In:2019 IEEE 4th advanced information technology, electronic and automation control conference (IAEAC) (vol. 1, pp. 1316–1320). https://doi.org/10.1109/IAEAC47372.2019.8997600
Liu, Y., et al. (2022). Neuron tracing from light microscopy images: automation, deep learning and bench testing. Bioinformatics, 38(24), 5329–5339. https://doi.org/10.1093/bioinformatics/btac712
Article CAS PubMed PubMed Central Google Scholar
Liu, Z., et al. (2021). A survey on applications of deep learning in microscopy image analysis. Computers in Biology and Medicine, 134, 104523. https://doi.org/10.1016/j.compbiomed.2021.104523
Mabaso, M. A., Withey, D. J., & Twala, B. (2018). Spot detection methods in fluorescence microscopy imaging: a review. Image Analysis & Stere, 37(3), 173. https://doi.org/10.5566/ias.1690
Makarkin, M., & Bratashov, D. (2021). State-of-the-art approaches for image deconvolution problems, including modern deep learning architectures. Micromachines, 12(12), 1558. https://doi.org/10.3390/mi12121558
Article PubMed PubMed Central Google Scholar
Marangoni, M., et al. (2014). Age-related axonal swellings precede other neuropathological hallmarks in a knock-in mouse model of huntington’s disease. Neurobiology of Aging, 35(10), 2382–2393. https://doi.org/10.1016/j.neurobiolaging.2014.04.024
McCormick, M., et al. (2014). Itk: Enabling reproducible research and open science. Frontiers in Neuroinformatics, 8, 13. https://doi.org/10.3389/fninf.2014.00013
Article PubMed PubMed Central Google Scholar
McKinney, W. (2010). Data structures for statistical computing in python. In: Proceedings of the 9th python in science conference, pp. 51–56. https://doi.org/10.25080/Majora-92bf1922-00a
Meijering, E. (2010). Neuron tracing in perspective. Cytometry Part A, 77A(7), 693–704. https://doi.org/10.1002/cyto.a.20895
Meijering, E., et al. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images.58A(2), 167–176. https://doi.org/10.1002/cyto.a.20022
Nikić, I., et al. (2011). A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nature Medicine, 17(4), 495–499. https://doi.org/10.1038/nm.2324
Article CAS PubMed Google Scholar
Prominence (2025) - MATLAB & Simulink - MathWorks India. https://in.mathworks.com/help/signal/ug/prominence.html
Quan, T., et al. (2013). Neurogps: automated localization of neurons for brain circuits using l1 minimization model. Scientific reports, 3(1), 1414. https://doi.org/10.1038/srep01414
Shepherd, G. M. G., Raastad, M., & Andersen, P. (2002). General and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellum. Proceedings of the National Academy of Sciences, 99(9), 6340–6345. https://doi.org/10.1073/pnas.052151299
Small, A., & Stahlheber, S. (2014). Fluorophore localization algorithms for super-resolution microscopy. Nature Methods, 11(3), 267–279. https://doi.org/10.1038/nmeth.2844
Article CAS PubMed Google Scholar
Soille, P. (2004).Morphological image analysis. Springer . Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05088-0
Stokin, G.B., et al.() Axonopathy and transport deficits early in the pathogenesis of alzheimer’s disease. Science 307(5713), 1282–1288. https://doi.org/10.1126/science.1105681. (Publisher: American Association for the Advancement of Science)
Swedlow, J.R. (2007) Quantitative fluorescence microscopy and image deconvolution. Methods in cell biology (vol. 81, pp. 447–465). Elsevier. https://doi.org/10.1016/S0091-679X(06)81021-6
Tagliaferro, P., & Burke, R. E. (2016). Retrograde axonal degeneration in parkinson disease. Journal of Parkinson’s Disease, 6(1), 1–15. https://doi.org/10.3233/JPD-150769
Article PubMed PubMed Central Google Scholar
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., et al. (2014). scikit-image: Image processing in python. PeerJ, 2, e453. https://doi.org/10.7717/peerj.453
Virtanen, P., Gommers, R., Oliphant, T. E., et al. (2020). Scipy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2
Article CAS PubMed PubMed Central Google Scholar
Wang, L., et al. (2003) Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Investigative Ophthalmology & Visual Science 44(1), 2–9. https://doi.org/10.1167/iovs.02-0333
Xing, F., et al. (2018). Deep learning in microscopy image analysis: A survey., 29(10), 4550–4568. https://doi.org/10.1109/TNNLS.2017.2766168
Xing, F., & Yang, L. (2016) Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review.9, 234–263. https://doi.org/10.1109/RBME.2016.2515127
Comments (0)