Alterations in Gray Matter Structure Linked to Frequency-Specific Cortico-Subcortical Connectivity in Schizophrenia via Multimodal Data Fusion

Abram, S. V., Roach, B. J., Fryer, S. L., Calhoun, V. D., Preda, A., van Erp, T. G. M., Bustillo, J. R., Lim, K. O., Loewy, R. L., Stuart, B. K., Krystal, J. H., Ford, J. M., & Mathalon, D. H. (2022). Validation of ketamine as a pharmacological model of thalamic dysconnectivity across the illness course of schizophrenia. Molecular Psychiatry, 27(5), 2448–2456. https://doi.org/10.1038/s41380-022-01502-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abrol, A., Rashid, B., Rachakonda, S., Damaraju, E., & Calhoun, V. D. (2017). Schizophrenia shows disrupted links between brain volume and dynamic functional connectivity. Frontiers in Neuroscience, 11. https://www.frontiersin.org/article/10.3389/fnins.2017.00624

Acar, E., Schenker, C., Levin-Schwartz, Y., Calhoun, V. D., & Adali, T. (2019). Unraveling diagnostic biomarkers of schizophrenia through structure-revealing fusion of multi-modal neuroimaging data. Frontiers in Neuroscience, 13, 416. https://doi.org/10.3389/fnins.2019.00416

Article  PubMed  PubMed Central  Google Scholar 

Alonso-Solís, A., Vives-Gilabert, Y., Portella, M. J., Rabella, M., Grasa, E. M., Roldán, A., Keymer-Gausset, A., Molins, C., Núñez-Marín, F., Gómez-Ansón, B., Alvarez, E., & Corripio, I. (2017). Altered amplitude of low frequency fluctuations in schizophrenia patients with persistent auditory verbal hallucinations. Schizophrenia Research, 189, 97–103. https://doi.org/10.1016/j.schres.2017.01.042

Article  PubMed  Google Scholar 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed). https://doi.org/10.1176/appi.books.9780890425596

Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M., Savic, A., Krystal, J. H., Pearlson, G. D., & Glahn, D. C. (2014). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral Cortex (New York, N.Y.: 1991), 24(12), 3116–3130. https://doi.org/10.1093/cercor/bht165

Article  PubMed  Google Scholar 

Ayano, G. (2016). Schizophrenia: A concise overview of etiology, epidemiology diagnosis and management: Review of literatures. Journal of Schizophrenia Research, 3, 1–7.

Google Scholar 

Bluhm, R. L., Miller, J., Lanius, R. A., Osuch, E. A., Boksman, K., Neufeld, R. W. J., Théberge, J., Schaefer, B., & Williamson, P. (2007). Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: Anomalies in the default network. Schizophrenia Bulletin, 33(4), 1004–1012. https://doi.org/10.1093/schbul/sbm052

Article  PubMed  PubMed Central  Google Scholar 

Calhoun, V. D., & Sui, J. (2016). Multimodal Fusion of Brain Imaging Data: A Key to Finding the Missing Link(s) in Complex Mental Illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(3), 230–244. https://doi.org/10.1016/j.bpsc.2015.12.005

Article  PubMed  Google Scholar 

Calhoun, V. D., Adali, T., Giuliani, N. R., Pekar, J. J., Kiehl, K. A., & Pearlson, G. D. (2006). Method for multimodal analysis of independent source differences in schizophrenia: Combining gray matter structural and auditory oddball functional data. Human Brain Mapping, 27(1), 47–62. https://doi.org/10.1002/hbm.20166

Article  CAS  PubMed  Google Scholar 

Calhoun, V. D., Kiehl, K. A., & Pearlson, G. D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828–838. https://doi.org/10.1002/hbm.20581

Article  PubMed  PubMed Central  Google Scholar 

Calhoun, V. D., Sui, J., Kiehl, K., Turner, J., Allen, E., & Pearlson, G. (2011). Exploring the psychosis functional connectome: Aberrant intrinsic networks in schizophrenia and bipolar disorder. Frontiers in Psychiatry, 2, 75. https://doi.org/10.3389/fpsyt.2011.00075

Article  PubMed  Google Scholar 

Calhoun, V. D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262–274. https://doi.org/10.1016/j.neuron.2014.10.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, H., Wei, X., Hu, N., Zhang, W., Xiao, Y., Zeng, J., Sweeney, J. A., Lencer, R., Lui, S., & Gong, Q. (2022). Cerebello-thalamo-cortical hyperconnectivity classifies patients and predicts long-term treatment outcome in first-episode schizophrenia. Schizophrenia Bulletin, 48(2), 505–513. https://doi.org/10.1093/schbul/sbab112

Article  PubMed  Google Scholar 

Chang, C., & Glover, G. H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 50(1), 81–98. https://doi.org/10.1016/j.neuroimage.2009.12.011

Article  PubMed  Google Scholar 

Clementz, B. A., Parker, D. A., Trotti, R. L., McDowell, J. E., Keedy, S. K., Keshavan, M. S., Pearlson, G. D., Gershon, E. S., Ivleva, E. I., Huang, L.-Y., Hill, S. K., Sweeney, J. A., Thomas, O., Hudgens-Haney, M., Gibbons, R. D., & Tamminga, C. A. (2022). Psychosis biotypes: Replication and validation from the B-SNIP Consortium | Schizophrenia Bulletin | Oxford Academic. Schizophrenia Bulletin, 48(1), 56–68. https://doi.org/10.1093/schbul/sbab090

Article  PubMed  Google Scholar 

Correa, N. M., Adalı, T., & Calhoun, V. D. (2007). Performance of blind source separation algorithms for fMRI analysis using a group ICA method. Magnetic Resonance Imaging, 25(5), 684–694. https://doi.org/10.1016/j.mri.2006.10.017

Article  PubMed  Google Scholar 

Correa, N. M., Eichele, T., Adalı, T., Li, Y.-O., & Calhoun, V. D. (2010). Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI. NeuroImage, 50(4), 1438–1445. https://doi.org/10.1016/j.neuroimage.2010.01.062

Article  PubMed  Google Scholar 

Cromwell, H. C., Mears, R. P., Wan, L., & Boutros, N. N. (2008). Sensory gating: A translational effort from basic to clinical science. Clinical EEG and Neuroscience, 39(2), 69–72. https://doi.org/10.1177/155005940803900209

Article  PubMed  PubMed Central  Google Scholar 

Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S., Mathalon, D. H., Mueller, B. A., Pearlson, G. D., Potkin, S. G., Preda, A., Turner, J. A., Vaidya, J. G., van Erp, T. G., & Calhoun, V. D. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage. Clinical, 5, 298–308. https://doi.org/10.1016/j.nicl.2014.07.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeRamus, T. P., Wu, L., Qi, S., Iraji, A., Silva, R., Du, Y., Pearlson, G., Mayer, A., Bustillo, J. R., Stromberg, S. F., & Calhoun, V. D. (2022). Multimodal data fusion of cortical-subcortical morphology and functional network connectivity in psychotic spectrum disorder. NeuroImage. Clinical, 35, 103056. https://doi.org/10.1016/j.nicl.2022.103056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2018). Dysfunction of large-scale brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Schizophrenia Bulletin, 44(1), 168–181. https://doi.org/10.1093/schbul/sbx034

Article  PubMed  Google Scholar 

Du, Y., Fu, Z., Sui, J., Gao, S., Xing, Y., Lin, D., Salman, M., Abrol, A., Rahaman, M. A., Chen, J., Hong, L. E., Kochunov, P., Osuch, E. A., Calhoun, V. D., Alzheimer’s Disease Neuroimaging Initiative. (2020). NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. NeuroImage. Clinical, 28, 102375. https://doi.org/10.1016/j.nicl.2020.102375

Article  PubMed  PubMed Central  Google Scholar 

Erdeniz, B., Serin, E., İbadi, Y., & Taş, C. (2017). Decreased functional connectivity in schizophrenia: The relationship between social functioning, social cognition and graph theoretical network measures. Psychiatry Research: Neuroimaging, 270, 22–31. https://doi.org/10.1016/j.pscychresns.2017.09.011

Article  PubMed  Google Scholar 

Faghiri, A., Iraji, A., Damaraju, E., Turner, J., & Calhoun, V. D. (2021). A unified approach for characterizing static/dynamic connectivity frequency profiles using filter banks. Network Neuroscience, 5(1), 56–82. https://doi.org/10.1162/netn_a_00155

Article  PubMed  PubMed Central  Google Scholar 

Ferri, J., Ford, J. M., Roach, B. J., Turner, J. A., van Erp, T. G., Voyvodic, J., Preda, A., Belger, A., Bustillo, J., O’Leary, D., Mueller, B. A., Lim, K. O., McEwen, S. C., Calhoun, V. D., Diaz, M., Glover, G., Greve, D., Wible, C. G., Vaidya, J. G., … Mathalon, D. H. (2018). Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychological Medicine, 48(15), 2492–2499. https://doi.org/10.1017/S003329171800003X

Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314. https://doi.org/10.1016/j.neuroimage.2011.12.090

Article  PubMed  Google Scholar 

Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Clinical Neuroscience (New York, N.Y.), 3(2), 89–97.

CAS  PubMed  Google Scholar 

Fu, Z., Tu, Y., Di, X., Du, Y., Pearlson, G. D., Turner, J. A., Biswal, B. B., Zhang, Z., & Calhoun, V. D. (2018). Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: An application to schizophrenia. NeuroImage, 180(Pt B), 619–631. https://doi.org/10.1016/j.neuroimage.2017.09.035

Article  PubMed  Google Scholar 

Fu, Z., Iraji, A., Turner, J. A., Sui, J., Miller, R., Pearlson, G. D., & Calhoun, V. D. (2021). Dynamic state with covarying brain activity-connectivity: On the pathophysiology of schizophrenia. NeuroImage, 224, 117385. https://doi.org/10.1016/j.neuroimage.2020.117385

Article  PubMed 

Comments (0)

No login
gif