Cerebellar Micro Complex Model Using Histologic Boolean Mapping Simulates Adaptive Motor Control

Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10(1–2), 25–61. https://doi.org/10.1016/0025-5564(71)90051-4

Article  Google Scholar 

Antonietti, A., Casellato, C., Garrido, J. A., Luque, N. R., Naveros, F., Ros, E., D’Angelo, E., & Pedrocchi, A. (2016). Spiking neural network with distributed plasticity reproduces cerebellar learning in eye blink conditioning paradigms. IEEE Transactions on Biomedical Engineering, 63(1), 210–219. https://doi.org/10.1109/TBME.2015.2485301

Article  PubMed  Google Scholar 

Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses. Science, 273(5283), 1868–1871. https://doi.org/10.1126/SCIENCE.273.5283.1868

Article  CAS  PubMed  Google Scholar 

Bazzari, A. H., & Parri, H. R. (2019). Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sciences, 9(11), 300. https://doi.org/10.3390/BRAINSCI9110300

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bodranghien, F., Bastian, A., Casali, C., Hallett, M., Louis, E. D., Manto, M., Mariën, P., Nowak, D. A., Schmahmann, J. D., Serrao, M., Steiner, K. M., Strupp, M., Tilikete, C., Timmann, D., & van Dun, K. (2016). Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome. Cerebellum (London, England), 15(3), 369. https://doi.org/10.1007/S12311-015-0687-3

Article  PubMed  PubMed Central  Google Scholar 

Brunetti, O., Imbrici, P., Botti, F. M., Pettorossi, V. E., D’Adamo, M. C., Valentino, M., Zammit, C., Mora, M., Gibertini, S., Di Giovanni, G., Muscat, R., & Pessia, M. (2012). Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature. Neurobiology of Disease, 47(3), 310. https://doi.org/10.1016/J.NBD.2012.05.002

Cao, Y., Liu, Y., Jaeger, D., & Heck, D. H. (2017). Cerebellar purkinje cells generate highly correlated spontaneous slow-rate fluctuations. Frontiers in Neural Circuits, 11, 280128. https://doi.org/10.3389/FNCIR.2017.00067/BIBTEX

Article  Google Scholar 

Carrillo, R. R., Ros, E., Boucheny, C., & Coenen, O. J. M. D. (2008). A real-time spiking cerebellum model for learning robot control. Bio Systems, 94(1–2), 18–27. https://doi.org/10.1016/J.BIOSYSTEMS.2008.05.008

Article  PubMed  Google Scholar 

Chaumont, J., Guyon, N., Valera, A. M., Dugué, G. P., Popa, D., Marcaggi, P., Gautheron, V., Reibel-Foisset, S., Dieudonné, S., Stephan, A., Barrot, M., Cassel, J. C., Dupont, J. L., Doussau, F., Poulain, B., Selimi, F., Léna, C., & Isope, P. (2013). Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proceedings of the National Academy of Sciences of the United States of America, 110(40), 16223–16228. https://doi.org/10.1073/PNAS.1302310110/-/DCSUPPLEMENTAL/PNAS.201302310SI.PDF

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cook, A. A., Fields, E., & Watt, A. J. (2021). Losing the Beat: Contribution of Purkinje Cell Firing Dysfunction to Disease, and Its Reversal. Neuroscience, 462, 247–261. https://doi.org/10.1016/j.neuroscience.2020.06.008

Article  CAS  PubMed  Google Scholar 

Coombs, J. S., Eccles, J. C., & Fatt, P. (1955a). The inhibitory suppression of reflex discharges from motoneurones. The Journal of Physiology, 130(2), 396. https://doi.org/10.1113/JPHYSIOL.1955.SP005414

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coombs, J. S., Eccles, J. C., & Fatt, P. (1955b). The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. The Journal of Physiology, 130(2), 326. https://doi.org/10.1113/JPHYSIOL.1955.SP005412

D’Angelo, E., & Casali, S. (2013). Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Frontiers in Neural Circuits, 6(DEC), 116. https://doi.org/10.3389/FNCIR.2012.00116

D’Angelo, E., & De Zeeuw, C. I. (2009). Timing and plasticity in the cerebellum: Focus on the granular layer. Trends in Neurosciences, 32(1), 30–40. https://doi.org/10.1016/J.TINS.2008.09.007

Article  PubMed  Google Scholar 

Davies, M. (2003). The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. Journal of Psychiatry and Neuroscience, 28(4), 263. https://pmc.ncbi.nlm.nih.gov/articles/PMC165791/

De Benedictis, A., Rossi-Espagnet, M. C., de Palma, L., Carai, A., & Marras, C. E. (2022). Networking of the Human Cerebellum: From Anatomo-Functional Development to Neurosurgical Implications. Frontiers in Neurology, 13, 806298. https://doi.org/10.3389/FNEUR.2022.806298

Article  PubMed  PubMed Central  Google Scholar 

Dorigo, A., Valishetti, K., Hetsch, F., Matsui, H., Meier, J. C., Namikawa, K., & Köster, R. W. (2023). Functional regionalization of the differentiating cerebellar Purkinje cell population occurs in an activity-dependent manner. Frontiers in Molecular Neuroscience, 16, 1166900. https://doi.org/10.3389/FNMOL.2023.1166900/BIBTEX

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dorkenwald, S., Matsliah, A., Sterling, A. R., Schlegel, P., Yu, S., McKellar, C. E., Lin, A., Costa, M., Eichler, K., Yin, Y., Silversmith, W., Schneider-Mizell, C., Jordan, C. S., Brittain, D., Halageri, A., Kuehner, K., Ogedengbe, O., Morey, R., Gager, J., … Zandawala, M. (2024). Neuronal wiring diagram of an adult brain. Nature, 634(8032), 124–138. https://doi.org/10.1038/S41586-024-07558-Y

Eccles, J. C., & Rall, W. (1951). Repetitive Monosynaptic Activation of Motoneurones. Proceedings of the Royal Society of London. Series B, Biological Sciences, 138(893), 475–498. http://www.jstor.org/stable/82754

Eccles, J. C., Ito, M., & Szentágothai, J. (1967). The Cerebellum as a Neuronal Machine. The Cerebellum as a Neuronal Machine. https://doi.org/10.1007/978-3-662-13147-3

Article  Google Scholar 

Enoka, R. M., & Duchateau, J. (2007). Muscle fatigue: What, why and how it influences muscle function. The Journal of Physiology, 586(Pt 1), 11. https://doi.org/10.1113/JPHYSIOL.2007.139477

Article  PubMed  PubMed Central  Google Scholar 

Eskiizmirliler, S., Forestier, N., Tondu, B., & Darlot, C. (2002). A model of the cerebellar pathways applied to the control of a single-joint robot arm actuated by McKibben artificial muscles. Biological Cybernetics, 86(5), 379–394. https://doi.org/10.1007/S00422-001-0302-1/METRICS

Article  CAS  PubMed  Google Scholar 

Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9(4), 292. https://doi.org/10.1038/NRN2258

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fastenrath, M., Spalek, K., Coynel, D., Loos, E., Milnik, A., Egli, T., Schicktanz, N., Geissmann, L., Roozendaal, B., Papassotiropoulos, A., & de Quervain, D. J. F. (2022). Human cerebellum and corticocerebellar connections involved in emotional memory enhancement. Proceedings of the National Academy of Sciences of the United States of America, 119(41), e2204900119. https://doi.org/10.1073/PNAS.2204900119/SUPPL_FILE/PNAS.2204900119.SAPP.PDF

Article  CAS  PubMed  PubMed Central  Google Scholar 

Felson, D. T. (2006). Clinical practice. Osteoarthritis of the knee. The New England Journal of Medicine, 354(8), 841–848. https://doi.org/10.1056/NEJMCP051726,

Fernandez, F. R., Engbers, J. D. T., & Turner, R. W. (2007). Firing dynamics of cerebellar Purkinje cells. Journal of Neurophysiology, 98(1), 278–294. https://doi.org/10.1152/JN.00306.2007/ASSET/IMAGES/LARGE/Z9K0070782900010.JPEG

Article  PubMed  Google Scholar 

FitzHugh, R. (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophysical Journal, 1(6), 445–466. https://doi.org/10.1016/S0006-3495(61)86902-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fletcher, C. F., Tottene, A., Lennon, V. A., Wilson, S. M., Dubel, S. J., Paylor, R., Hosford, D. A., Tessarollo, L., McEnery, M. W., Pietrobon, D., Copeland, N. G., & Jenkins, N. A. (2001). Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. The FASEB Journal, 15(7), 1288–1290. https://doi.org/10.1096/FJ.00-0562FJE

Article  CAS  PubMed  Google Scholar 

Frens, M. A., Mathoera, A. L., & Van Der Steen, J. (2001). Floccular complex spike response to transparent retinal slip. Neuron, 30(3), 795–801. https://doi.org/10.1016/S0896-6273(01)00321-X

Article  CAS  PubMed  Google Scholar 

Gao, Z., Van Beugen, B. J., & De Zeeuw, C. I. (2012). Distributed synergistic plasticity and cerebellar learning. Nature Reviews. Neuroscience, 13(9), 619–635. https://doi.org/10.1038/NRN3312

Article  CAS  PubMed  Google Scholar 

Garrido, J. A., Luque, N. R., D’Angelo, E., & Ros, E. (2013). Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: A closed-loop robotic simulation. Frontiers in Neural Circuits, 7, 58042. https://doi.org/10.3389/FNCIR.2013.00159/ABSTRACT

Article  Google Scholar 

Geminiani, A., Casellato, C., Boele, H. J., Pedrocchi, A., De Zeeuw, C. I., & D’Angelo, E. (2024). Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning. PLOS Computational Biology, 20(4), e1011277. https://doi.org/10.1371/JOURNAL.PCBI.1011277

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif