Abbasi, M., Santos, B. P., Pereira, T. C., Sofia, R., Monteiro, N. R. C., Simões, C. J. V., Brito, R. M. M., Ribeiro, B., Oliveira, J. L., & Arrais, J. P. (2022). Designing optimized drug candidates with Generative Adversarial Network. Journal of Cheminformatics, 14(1), 40. https://doi.org/10.1186/s13321-022-00623-6. Erratum.In:JCheminform.2022Aug11;14(1):53.10.1186/s13321-022-00631-6.
Article PubMed PubMed Central Google Scholar
Albrecht LJ, Höwner A, Griewank K, et al (2022) Circulating cell-free messenger RNA enables non-invasive pan-tumour monitoring of melanoma therapy independent of the mutational genotype. Clinical and Translational Medicine 12. https://doi.org/10.1002/ctm2.1090
Alhoraibi, L., Alghazzawi, D., & Alhebshi, R. (2024). Generative Adversarial Network-Based Data Augmentation for Enhancing Wireless Physical Layer Authentication. Sensors (Basel), 24(2), 641. https://doi.org/10.3390/s24020641
Amal, S., Safarnejad, L., Omiye, J. A., Ghanzouri, I., Cabot, J. H., & Ross, E. G. (2022). Use of multi-modal data and machine learning to improve cardiovascular disease care. Frontiers in Cardiovascular Medicine, 27(9), 840262. https://doi.org/10.3389/fcvm.2022.840262
Arora, A. (2022). Generative adversarial networks and synthetic patient data: Current challenges and future perspectives. Future Healthcare Journal, 9(2), 190–193. https://doi.org/10.7861/fhj.2022-0013
Article PubMed PubMed Central Google Scholar
Azizi, Z., Zheng, C., Mosquera, L., Pilote, L., & El Emam, K. (2021). GOING-FWD Collaborators. Can synthetic data be a proxy for real clinical trial data? A validation study. British Medical Journal Open, 11(4), e043497. https://doi.org/10.1136/bmjopen-2020-043497
Ben-Hur, A., & Weston, J. (2010). A user’s guide to support vector machines. Methods in Molecular Biology, 609, 223–239. https://doi.org/10.1007/978-1-60327-241-4_13
Article CAS PubMed Google Scholar
Bannick, M. S., McGaughey, M., & Flaxman, A. D. (2021). Ensemble modelling in descriptive epidemiology: Burden of disease estimation. International Journal of Epidemiology, 49, 2065–2073. https://doi.org/10.1093/ije/dyz223
Brasil, S., de Carvalho, N. R., Salinet, Â. S. M., et al. (2023). Critical closing pressure and cerebrovascular resistance responses to intracranial pressure variations in neurocritical patients. Neurocritical Care, 39, 399–410. https://doi.org/10.1007/s12028-023-01691-8
Article PubMed PubMed Central Google Scholar
Brum, W. S., Ashton, N. J., Simrén, J., di Molfetta, G., Karikari, T. K., Benedet, A. L., Zimmer, E. R., Lantero-Rodriguez, J., Montoliu-Gaya, L., Jeromin, A., Aarsand, A. K., Bartlett, W. A., Calle, P. F., Coşkun, A., Díaz-Garzón, J., Jonker, N., Zetterberg, H., Sandberg, S., Carobene, A., & Blennow, K. (2024). Biological variation estimates of Alzheimer’s disease plasma biomarkers in healthy individuals. Alzheimer’s & Dementia, 20(2), 1284–1297. https://doi.org/10.1002/alz.13518
Burgos K, Malenica I, Metpally R, et al (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PLoS One 9. https://doi.org/10.1371/journal.pone.0094839
Burman, R., Shah, A. H., Benveniste, R., Jimsheleishvili, G., Lee, S. H., Loewenstein, D., & Alperin, N. (2019). Comparing invasive with MRI-derived intracranial pressure measurements in healthy elderly and brain trauma cases: A pilot study. Journal of Magnetic Resonance Imaging, 50(3), 975–981. https://doi.org/10.1002/jmri.26695
Cao, Y., Li, Y., Fu, W., Cheng, G., Tian, X., Wang, J., Zha, S., & Wang, J. (2024). High performance filtering and high-sensitivity concentration retrieval of methane in photoacoustic spectroscopy utilizing deep learning residual networks. Photoacoustics, 12(39), 100647. https://doi.org/10.1016/j.pacs.2024.100647
Charilaou, P., & Battat, R. (2022). Machine learning models and over-fitting considerations. World Journal of Gastroenterology, 28(5), 605–607. https://doi.org/10.3748/wjg.v28.i5.605
Article PubMed PubMed Central Google Scholar
Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F. K., & Mahmood, F. (2021). Synthetic data in machine learning for medicine and healthcare. Nature Biomedical Engineering, 5(6), 493–497. https://doi.org/10.1038/s41551-021-00751-8
Article PubMed PubMed Central Google Scholar
Chen, S., Zhang, C., & Mu, H. (2024a). An adaptive learning rate deep learning optimizer using long and short-term gradients based on G-L fractional-order derivative. Neural Processing Letters, 56, 106. https://doi.org/10.1007/s11063-024-11571-7
Chen, H., Dan, L., Lu, Y., Chen, M., & Zhang, J. (2024b). An improved data augmentation approach and its application in medical named entity recognition. BMC Medical Informatics and Decision Making, 24(1), 221. https://doi.org/10.1186/s12911-024-02624-x
Cheung, K. W. E., Choi, S. R., Lee, L. T. C., et al. (2019). The potential of circulating cell free RNA as a biomarker in cancer. Expert Review of Molecular Diagnostics, 19, 579–590. https://doi.org/10.1080/14737159.2019.1633307
Article CAS PubMed Google Scholar
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj Computer Science, 5(7), e623. https://doi.org/10.7717/peerj-cs.623
da Silva Neto, S. R., Tabosa Oliveira, T., Teixeira, I. V., Aguiar de Oliveira, S. B., Souza Sampaio, V., Lynn, T., & Endo, P. T. (2022). Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review. PLoS Neglected Tropical Diseases, 16(1), e0010061. https://doi.org/10.1371/journal.pntd.0010061
Article PubMed PubMed Central Google Scholar
D’Amico, S., Dall’Olio, D., Sala, C., Dall’Olio, L., Sauta, E., Zampini, M., Asti, G., Lanino, L., Maggioni, G., Campagna, A., Ubezio, M., Russo, A., Bicchieri, M. E., Riva, E., Tentori, C. A., Travaglino, E., Morandini, P., Savevski, V., Santoro, A., … Della Porta, M. G. (2023). Synthetic Data Generation by Artificial Intelligence to Accelerate Research and Precision Medicine in Hematology. JCO Clinical Cancer Informatics, 7, e2300021. https://doi.org/10.1200/CCI.23.00021
Article PubMed PubMed Central Google Scholar
Dammer, E. B., Ping, L., Duong, D. M., Modeste, E. S., Seyfried, N. T., Lah, J. J., Levey, A. I., & Johnson, E. C. B. (2022). Multi-platform proteomic analysis of Alzheimer’s disease cerebrospinal fluid and plasma reveals network biomarkers associated with proteostasis and the matrisome. Alzheimer’s Research & Therapy, 14(1), 174. https://doi.org/10.1186/s13195-022-01113-5
D'Antona L, Asif H, Craven CL, et al. (2021) Brain MRI and ophthalmic biomarkers of intracranial pressure. Neurology 96–e2723. https://doi.org/10.1212/WNL.0000000000012023
DeLouize, A. M., Eick, G., Karam, S. D., & Snodgrass, J. J. (2022). Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. American Journal of Human Biology, 34(11), e23665. https://doi.org/10.1002/ajhb.23665
Dimitriadis, A., Trivizakis, E., Papanikolaou, N., Tsiknakis, M., & Marias, K. (2022). Enhancing cancer differentiation with synthetic MRI examinations via generative models: A systematic review. Insights into Imaging, 13(1), 188. https://doi.org/10.1186/s13244-022-01315-3
Article PubMed PubMed Central Google Scholar
Dos Santos, P. M. N., Mendes, S. L., Biazoli, C., Gadelha, A., Salum, G. A., Miguel, E. C., Rohde, L. A., & Sato, J. R. (2023). Assessing atypical brain functional connectivity development: An approach based on generative adversarial networks. Frontiers in Neuroscience, 9(16), 1025492. https://doi.org/10.3389/fnins.2022.1025492
Du, N. H., Arpat, A. B., De Matos, M., & Gatfield, D. (2014). MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife, 27(3), e02510. https://doi.org/10.7554/eLife.02510
Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(1), 140. https://doi.org/10.1186/s40537-021-00516-9
Article PubMed PubMed Central Google Scholar
Engelborghs, S., Niemantsverdriet, E., Struyfs, H., et al. (2017). Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimers Dement (Amst), 8, 111–126. https://doi.org/10.1016/j.dadm.2017.04.007
Evensen, K. B., & Eide, P. K. (2020). Measuring intracranial pressure by invasive, less invasive or non-invasive means: Limitations and avenues for improvement. Fluids Barriers CNS, 17, 34. https://doi.org/10.1186/s12987-020-00195-3
Article PubMed PubMed Central Google Scholar
Félix, H., & Oliveira, E. S. (2022). Non-invasive intracranial pressure monitoring and its applicability in spaceflight. Aerospace Medicine and Human Performance, 93, 517–531. https://doi.org/10.3357/AMHP.5922.2022
Feng, C., Wang, H., Lu, N., Chen, T., He, H., Lu, Y., & Tu, X. M. (2014). Log-transformation and its implications for data analysis. Shanghai Archives of Psychiatry, 26(2), 105–109. https://doi.org/10.3969/j.issn.1002-0829.2014.02.009. Erratum.In:GenPsychiatr.2019Sep6;32(5):e100146corr1.10.1136/gpsych-2019-100146corr1.
Article PubMed PubMed Central Google Scholar
Gao, L., Zhang, L., Liu, C., & Wu, S. (2020). Handling imbalanced medical image data: A deep-learning-based one-class classification approach. Artificial Intelligence in Medicine, 108, 101935.
Comments (0)