Insights into insulin signalling and oxidative stress in the Tg2576 mouse model of familial Alzheimer’s disease: effects of chronic oral galactose administration

Akintola AA, van Heemst D (2015) Insulin, Aging, and the brain: mechanisms and implications. Front Endocrinol. https://doi.org/10.3389/fendo.2015.00013

Article  Google Scholar 

An W-L, Cowburn RF, Li L, Braak H, Alafuzoff I, Iqbal K, Iqbal I-G, Winblad B, Pei J-J (2003) Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. Am J Pathol 163(2):591–607. https://doi.org/10.1016/S0002-9440(10)63687-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Apelt J, Bigl M, Wunderlich P, Schliebs R (2004) Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. Int J Dev Neurosci 22(7):475–484. https://doi.org/10.1016/j.ijdevneu.2004.07.006

Article  CAS  PubMed  Google Scholar 

Azman KF, Zakaria R (2019) d-Galactose-induced accelerated aging model: an overview. Biogerontology 20(6):763–782. https://doi.org/10.1007/s10522-019-09837-y

Article  PubMed  Google Scholar 

Babic Perhoc A, Osmanovic Barilar J, Knezovic A, Farkas V, Bagaric R, Svarc A, Grünblatt E, Riederer P, Salkovic-Petrisic M (2019) Cognitive, behavioral and metabolic effects of oral galactose treatment in the transgenic Tg2576 mice. Neuropharmacology 148:50–67. https://doi.org/10.1016/J.NEUROPHARM.2018.12.018

Article  CAS  PubMed  Google Scholar 

BaranowskaBik A, Bik W (2017) Insulin and brain aging. Prz Menopauzalny 16(2):44–46. https://doi.org/10.5114/pm.2017.68590

Article  PubMed  Google Scholar 

Beery AK (2018) Inclusion of females does not increase variability in rodent research studies. Curr Opin Behav Sci 23:143–149. https://doi.org/10.1016/j.cobeha.2018.06.016

Article  PubMed  PubMed Central  Google Scholar 

Belkacemi A, Ramassamy C (2012) Time sequence of oxidative stress in the brain from transgenic mouse models of Alzheimer’s disease related to the amyloid-β cascade. Free Radic Biol Med 52(3):593–600. https://doi.org/10.1016/j.freeradbiomed.2011.11.020

Article  CAS  PubMed  Google Scholar 

Berven LA, Crouch MF (2000) Cellular function of p70S6K: a role in regulating cell motility. Immunol Cell Biol 78(4):447–451. https://doi.org/10.1046/j.1440-1711.2000.00928.x

Article  CAS  PubMed  Google Scholar 

Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, García-García L, Gómez-Oliver F, Ruiz-Albusac JM, Ávila J, Pozo MÁ (2022) Significance of brain glucose hypometabolism, altered insulin signal transduction, and insulin resistance in several neurological diseases. Front Endocrinol. https://doi.org/10.3389/fendo.2022.873301

Article  Google Scholar 

Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA, Murri L, Rapoport SI, Solaini G (2002) Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging 23(3):371–376. https://doi.org/10.1016/S0197-4580(01)00314-1

Article  CAS  PubMed  Google Scholar 

Cai Z, Zhao Y, Zhao B (2012) Roles of glycogen synthase kinase 3 in Alzheimer's disease. Curr Alzheimer Res 9(7):864–79. https://doi.org/10.2174/156720512802455386

Article  CAS  PubMed  Google Scholar 

Chen M, Huang N, Liu J, Huang J, Shi J, Jin F (2021) AMPK: a bridge between diabetes mellitus and Alzheimer’s disease. Behav Brain Res 400:113043. https://doi.org/10.1016/j.bbr.2020.113043

Article  CAS  PubMed  Google Scholar 

Chua L-M, Lim M-L, Chong P-R, Hu ZP, Cheung NS, Wong B-S (2012) Impaired neuronal insulin signaling precedes Aβ 42 accumulation in female AβPPsw/PS1ΔE9 mice. J Alzheimers Dis 29(4):783–791. https://doi.org/10.3233/JAD-2012-111880

Article  CAS  PubMed  Google Scholar 

Davoody S, Asgari Taei A, Khodabakhsh P, Dargahi L (2023) mTOR signaling and Alzheimer’s disease: what we know and where we are? CNS Neurosci Ther 30(4):e14463. https://doi.org/10.1111/cns.14463

Article  PubMed  PubMed Central  Google Scholar 

de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 9(1):35–66. https://doi.org/10.2174/156720512799015037

Article  PubMed  PubMed Central  Google Scholar 

Ding VW, Chen R-H, McCormick F (2000) Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling*. J Biol Chem 275(42):32475–32481. https://doi.org/10.1074/jbc.M005342200

Article  CAS  PubMed  Google Scholar 

Dong H, Yuede CM, Yoo H-S, Martin MV, Deal C, Mace AG, Csernansky JG (2008) Corticosterone and related receptor expression are associated with increased β-amyloid plaques in isolated Tg2576 mice. Neuroscience 155(1):154–163. https://doi.org/10.1016/j.neuroscience.2008.05.017

Article  CAS  PubMed  Google Scholar 

Forde JE, Dale TC (2007) Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol Life Sci 64(15):1930–1944. https://doi.org/10.1007/s00018-007-7045-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh D, LeVault KR, Barnett AJ, Brewer GJ (2012) A reversible early oxidized redox state that precedes macromolecular ROS damage in aging nontransgenic and 3xTg-AD mouse neurons. J Neurosci 32(17):5821–5832. https://doi.org/10.1523/JNEUROSCI.6192-11.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gil-Iturbe E, Solas M, Cuadrado-Tejedo M, García-Osta A, Escoté X, Ramírez MJ, Lostao MP (2020) GLUT12 expression in brain of mouse models of Alzheimer’s disease. Mol Neurobiol 57(2):798–805. https://doi.org/10.1007/s12035-019-01743-1

Article  CAS  PubMed  Google Scholar 

Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S (2022) Neuronal cell death mechanisms in Alzheimer’s disease: an insight. Front Mol Neurosci 15:937133. https://doi.org/10.3389/fnmol.2022.937133

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong S, Miao Y-L, Jiao G-Z, Sun M-J, Li H, Lin J, Luo M-J, Tan J-H (2015) Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS ONE 10(2):e0117503. https://doi.org/10.1371/journal.pone.0117503

Article  CAS  PubMed  PubMed Central  Google Scholar 

Homolak J, Babic Perhoc A, Knezovic A, Kodvanj I, Virag D, Osmanovic Barilar J, Riederer P, Salkovic-Petrisic M (2021) Is galactose a hormetic sugar? An exploratory study of the rat hippocampal redox regulatory network. Mol Nutr Food Res 65:e2100400

Article  PubMed  Google Scholar 

Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Virag D, Joja M, Salkovic-Petrisic M (2022a) The effect of acute oral galactose administration on the redox system of the rat small intestine. Antioxidants (Basel) 11:37

Article  CAS  Google Scholar 

Homolak J, Kodvanj I, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Riederer P, Salkovic-Petrisic M (2022b) Nitrocellulose redox permanganometry: a simple method for reductive capacity assessment. MethodsX 9:101611

Article  CAS  PubMed  Google Scholar 

Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Virag D, Salkovic-Petrisic M (2023) Exploratory study of gastrointestinal redox biomarkers in the presymptomatic and symptomatic Tg2576 mouse model of familial Alzheimer’s disease: phenotypic correlates and effects of chronic oral d-galactose. ACS Chem Neurosci 14(22):4013–4025. https://doi.org/10.1021/acschemneuro.3c00495

Article  CAS  PubMed  Google Scholar 

Homolak J, Joja M, Grabaric G, Schiatti E, Virag D, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M (2024) The absence of gastrointestinal redox dyshomeostasis in the brain-first rat model of Parkinson’s disease induced by bilateral intrastriatal 6-hydroxydopamine. Mol Neurobiol 61(8):5481–5493. https://doi.org/10.1007/s12035-023-03906-7

Article  CAS 

Comments (0)

No login
gif