Mitochondrial medicine: “from bench to bedside” 3PM-guided concept

Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, Golubnitschaja O. Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13(2):177–93. https://doi.org/10.1007/s13167-022-00281-6.

Article  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O. What is the routine mitochondrial health check-up good for? A Holistic Approach in the Framework of 3P Medicine. In: Podbielska H, Kapalla M, editors. Predict Prev Pers Med Bench Bedside. Cham: Springer International Publishing; 2023;19–44. https://doi.org/10.1007/978-3-031-34884-6_3.

Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J. 2024;15(2):163–205. https://doi.org/10.1007/s13167-024-00358-4.

Article  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O, Polivka J Jr, Potuznik P, Pesta M, Stetkarova I, Mazurakova A, Lackova L, Kubatka P, Kropp M, Thumann G, Erb C, Fröhlich H, Wang W, Baban B, Kapalla M, Shapira N, Richter K, Karabatsiakis A, Smokovski I, Schmeel LC, Gkika E, Paul F, Parini P, Polivka J. The paradigm change from reactive medical services to 3PM in ischemic stroke: a holistic approach utilising tear fluid multi-omics, mitochondria as a vital biosensor and AI-based multi-professional data interpretation. EPMA J. 2024;15(1):1–23. https://doi.org/10.1007/s13167-024-00356-6.

Article  PubMed  PubMed Central  Google Scholar 

Chen R, Wang X, Li N, Golubnitschaja O, Zhan X. Body fluid multiomics in 3PM-guided ischemic stroke management: health risk assessment, targeted protection against health-to-disease transition, and cost-effective personalized approach are envisaged. EPMA J. 2024;15(3):415–52. https://doi.org/10.1007/s13167-024-00376-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O. Mitochondrion the subordinated partner who agreed to come short but insists in healthy life. Springer Nature Switzerland. 2024;17–29. https://doi.org/10.1007/978-3-031-46891-9_3.

Wu Z, Sainz AG, Shadel GS. Mitochondrial DNA: cellular genotoxic stress sentinel. Trends Biochem Sci. 2021;46(10):812–21. https://doi.org/10.1016/j.tibs.2021.05.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vasan K, Werner M, Chandel NS. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 2020;32(3):341–52. https://doi.org/10.1016/j.cmet.2020.06.019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whitley BN, Engelhart EA, Hoppins S. Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion. 2019;49:269–83. https://doi.org/10.1016/j.mito.2019.06.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Z, Yang L, Zhang M, Tang H, Huang Y, Su Y, et al. A novel protein CYTB-187AA encoded by the mitochondrial gene CYTB modulates mammalian early development. Cell Metab. 2024;36(7):1586-97.e7. https://doi.org/10.1016/j.cmet.2024.04.012.

Article  CAS  PubMed  Google Scholar 

Wallace DC. Mitochondrial genetic medicine. Nat Genet. 2018;50(12):1642–9. https://doi.org/10.1038/s41588-018-0264-z.

Article  CAS  PubMed  Google Scholar 

Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65. https://doi.org/10.1038/290457a0.

Article  CAS  PubMed  Google Scholar 

Li N, Zhan X. MASS Spectrometry-based mitochondrial proteomics in human ovarian cancers. Mass Spectrom Rev. 2020;39(5–6):471–98. https://doi.org/10.1002/mas.21618.

Article  CAS  PubMed  Google Scholar 

Wang Q, Guan Z, Qi L, Zhuang J, Wang C, Hong S, et al. Structural insight into the SAM-mediated assembly of the mitochondrial TOM core complex. Science. 2021;373(6561):1377–81. https://doi.org/10.1126/science.abh0704.

Article  CAS  PubMed  Google Scholar 

Sim SI, Chen Y, Lynch DL, Gumbart JC, Park E. Structural basis of mitochondrial protein import by the TIM23 complex. Nature. 2023;621(7979):620–6. https://doi.org/10.1038/s41586-023-06239-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. 2017;86:685–714. https://doi.org/10.1146/annurev-biochem-060815-014352.

Article  CAS  PubMed  Google Scholar 

Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20(5):267–84. https://doi.org/10.1038/s41580-018-0092-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busch JD, Fielden LF, Pfanner N, Wiedemann N. Mitochondrial protein transport: versatility of translocases and mechanisms. Mol Cell. 2023;83(6):890–910. https://doi.org/10.1016/j.molcel.2023.02.020.

Article  CAS  PubMed  Google Scholar 

Song J, Herrmann JM, Becker T. Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol. 2021;22(1):54–70. https://doi.org/10.1038/s41580-020-00300-2.

Article  CAS  PubMed  Google Scholar 

Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204. https://doi.org/10.1016/j.devcel.2007.11.019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra P, Chan DC. Metabolic regulation of mitochondrial dynamics. J Cell Biol. 2016;212(4):379–87. https://doi.org/10.1083/jcb.201511036.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou H, Ren J, Toan S, Mui D. Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside. Ageing Res Rev. 2021;66:101250. https://doi.org/10.1016/j.arr.2020.101250.

Article  CAS  PubMed  Google Scholar 

Zhao S, Zhang X, Shi Y, Cheng L, Song T, Wu B, et al. MIEF2 over-expression promotes tumor growth and metastasis through reprogramming of glucose metabolism in ovarian cancer. J Exp Clin Cancer Res. 2020;39(1):286. https://doi.org/10.1186/s13046-020-01802-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu J, Meng Y, Zhang Z, Yan Q, Jiang X, Lv Z, et al. MARCH5 RNA promotes autophagy, migration, and invasion of ovarian cancer cells. Autophagy. 2017;13(2):333–44. https://doi.org/10.1080/15548627.2016.1256520.

Article  CAS  PubMed  Google Scholar 

Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32(40):4814–24. https://doi.org/10.1038/onc.2012.494.

Article  CAS  PubMed  Google Scholar 

Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20(1):31–42. https://doi.org/10.1038/cdd.2012.81.

Article  CAS  PubMed  Google Scholar 

Yamada T, Dawson TM, Yanagawa T, Iijima M, Sesaki H. SQSTM1/p62 promotes mitochondrial ubiquitination independently of PINK1 and PRKN/parkin in mitophagy. Autophagy. 2019;15(11):2012–8. https://doi.org/10.1080/15548627.2019.1643185.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Song FH, Wu JY, Zhang LQ, Li DY, Gao SJ, et al. Sestrin2 overexpression attenuates osteoarthritis pain via induction of AMPK/PGC-1α-mediated mitochondrial biogenesis and suppression of neuroinflammation. Brain Behav Immun. 2022;102:53–70. https://doi.org/10.1016/j.bbi.2022.02.015.

Comments (0)

No login
gif