Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133–223. https://doi.org/10.1152/physrev.00063.2017.
Article CAS PubMed PubMed Central Google Scholar
Barber TM, Kyrou I, Randeva HS, Weickert MO. Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction. Int J Mol Sci. 2021;22(2):546. https://doi.org/10.3390/ijms22020546.
Article CAS PubMed PubMed Central Google Scholar
Park SE, Park CY, Sweeney G. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future. Crit Rev Clin Lab Sci. 2015;52(4):180–90. https://doi.org/10.3109/10408363.2015.1023429.
Article CAS PubMed Google Scholar
Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr Physiol. 2018;9(1):1–58. https://doi.org/10.1002/cphy.c170040.
Article PubMed PubMed Central Google Scholar
Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55(1):31–55. https://doi.org/10.1016/j.immuni.2021.12.013.
Article CAS PubMed PubMed Central Google Scholar
Haeusler RA, Mcgraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19(1):31–44. https://doi.org/10.1038/nrm.2017.89.
Article CAS PubMed Google Scholar
Yamauchi T, Kadowaki T. Adiponectin Receptor as a Key Player in Healthy Longevity and Obesity-Related Diseases. Cell Metab. 2013;17(2):185–96. https://doi.org/10.1016/j.cmet.2013.01.001.
Article CAS PubMed Google Scholar
James DE, Stockli J, Birnbaum MJ. The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol. 2021;22(11):751–71. https://doi.org/10.1038/s41580-021-00390-6.
Article CAS PubMed Google Scholar
King DE, Mainous AG, Buchanan TA, Pearson WS. C-Reactive Protein and Glycemic Control in Adults With Diabetes. Diabetes Care. 2003;26(5):1535–9. https://doi.org/10.2337/diacare.26.5.1535.
Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, Krapfenbauer K, Mozaffari MS, Costigliola V. Medicine in the early twenty-first century: paradigm and anticipation-EPMA position paper 2016. EPMA J. 2016;7(1). https://doi.org/10.1186/s13167-016-0072-4.
Smokovski I, Steinle N, Behnke A, Bhaskar SMM, Grech G, Richter K, et al. Digital biomarkers: 3PM approach revolutionizing chronic disease management — EPMA 2024 position. EPMA J. 2024;15(2):149–62. https://doi.org/10.1007/s13167-024-00364-6.
Article PubMed PubMed Central Google Scholar
Xiao Y, Xiao X, Zhang X, Yi D, Li T, Hao Q, et al. Mediterranean diet in the targeted prevention and personalized treatment of chronic diseases: evidence, potential mechanisms, and prospects. EPMA J. 2024;15(2):207–20. https://doi.org/10.1007/s13167-024-00360-w.
Koklesova L, Mazurakova A, Samec M, Biringer K, Samuel SM, Busselberg D, et al. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021;12(4):477–505. https://doi.org/10.1007/s13167-021-00263-0.
Article PubMed PubMed Central Google Scholar
Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, Sargheini N, Vo TKS, et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023;14(1):21–42. https://doi.org/10.1007/s13167-023-00314-8.
Article PubMed PubMed Central Google Scholar
Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019;10(4):365–81. https://doi.org/10.1007/s13167-019-00194-x.
Article PubMed PubMed Central Google Scholar
Sena CM, Goncalves L, Seica R. Methods to evaluate vascular function: a crucial approach towards predictive, preventive, and personalised medicine. EPMA J. 2022;13(2):209–35. https://doi.org/10.1007/s13167-022-00280-7.
Article PubMed PubMed Central Google Scholar
Wang W. Glycomedicine: The Current State of the Art. Engineering. 2023;26:12–5. https://doi.org/10.1016/j.eng.2022.03.009.
Meng X, Wang F, Gao X, Wang B, Xu X, Wang Y, et al. Association of IgG N-glycomics with prevalent and incident type 2 diabetes mellitus from the paradigm of predictive, preventive, and personalized medicine standpoint. EPMA J. 2023;14(1):1–20. https://doi.org/10.1007/s13167-022-00311-3.
Yu L, Wan Q, Liu Q, Fan Y, Zhou Q, Skowronski AA, et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 2024;36(4):793–807.e5. https://doi.org/10.1016/j.cmet.2024.01.015.
Article CAS PubMed PubMed Central Google Scholar
Walters H. IgG is an early driver of aging. Nature Aging. 2024;4(3):279–279. https://doi.org/10.1038/s43587-024-00602-6.
Wang TT, Ravetch JV. Functional diversification of IgGs through Fc glycosylation. J Clin Investig. 2019;129(9):3492–8. https://doi.org/10.1172/jci130029.
Article PubMed PubMed Central Google Scholar
Adua E, Anto EO, Roberts P, Kantanka OS, Aboagye E, Wang W. The potential of N-glycosylation profiles as biomarkers for monitoring the progression of Type II diabetes mellitus towards diabetic kidney disease. J Diabetes Metab Disord. 2018;17(2):233–46. https://doi.org/10.1007/s40200-018-0365-3.
Article CAS PubMed PubMed Central Google Scholar
Plomp R, Ruhaak LR, Uh HW, Reiding KR, Selman M, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, Wuhrer M. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci Rep. 2017;7(1). https://doi.org/10.1038/s41598-017-12495-0.
Memarian E, Heijmans R, Slieker RC, Sierra A, Gornik O, Beulens JWJ, et al. IgG N-glycans are associated with prevalent and incident complications of type 2 diabetes. Diabetes Metab Res Rev. 2023;39(7): e3685. https://doi.org/10.1002/dmrr.3685.
Article CAS PubMed Google Scholar
Gu Y, Duan B, Sha J, Zhang R, Fan J, Xu X, et al. Serum IgG N-glycans enable early detection and early relapse prediction of colorectal cancer. Int J Cancer. 2023;152(3):536–47. https://doi.org/10.1002/ijc.34298.
Article CAS PubMed Google Scholar
Kristic J, Lauc G. The importance of IgG glycosylation-What did we learn after analyzing over 100,000 individuals. Immunol Rev. 2024;328(1):143–70. https://doi.org/10.1111/imr.13407.
Article CAS PubMed PubMed Central Google Scholar
Pezer M. Immunoglobulin G Glycosylation in Diseases.In Antibody Glycosylation. 2021, Springer International Publishing: Cham. p. 395–431. https://doi.org/10.1007/978-3-030-76912-3_13.
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. https://doi.org/10.1007/bf00280883.
Article CAS PubMed Google Scholar
Diniz M, Beleigoli AMR, Schmidt MI, Duncan BB, Ribeiro ALP, Vidigal PG, et al. Homeostasis model assessment of insulin resistance (HOMA-IR) and metabolic syndrome at baseline of a multicentric Brazilian cohort: ELSA-Brasil study. Cad Saude Publica. 2020;36(8): e00072120. https://doi.org/10.1590/0102-311X00072120.
Huang R, Cheng Z, Jin X, Yu X, Yu J, Guo Y, et al. Usefulness of four surrogate indexes of insulin resistance in middle-aged population in Hefei. China Annals of Medicine. 2022;54(1):622–32. https://doi.org/10.1080/07853890.2022.2039956.
Comments (0)