Comprehensive genome-wide analysis of retinal vessel caliber reveals microvascular-blood pressure pathways: advancing predictive, preventive, and personalized medicine

Hakim AM. Small vessel disease. Front Neurol. 2019;10:1020. https://doi.org/10.3389/fneur.2019.01020.

Article  PubMed  PubMed Central  Google Scholar 

Berry C, Sidik N, Pereira AC, Ford TJ, Touyz RM, Kaski JC, et al. Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J Am Heart Assoc. 2019;8(3): e011104. https://doi.org/10.1161/jaha.118.011104.

Article  PubMed  PubMed Central  Google Scholar 

Zhou W, Sabel BA. Vascular dysregulation in glaucoma: retinal vasoconstriction and normal neurovascular coupling in altitudinal visual field defects. EPMA J. 2023;14(1):87–99. https://doi.org/10.1007/s13167-023-00316-6.

Article  PubMed  PubMed Central  Google Scholar 

Evsevieva M, Sergeeva O, Mazurakova A, Koklesova L, Prokhorenko-Kolomoytseva I, Shchetinin E, et al. Pre-pregnancy check-up of maternal vascular status and associated phenotype is crucial for the health of mother and offspring. EPMA J. 2022;13(3):351–66. https://doi.org/10.1007/s13167-022-00294-1.

Article  PubMed  PubMed Central  Google Scholar 

Perez-Rovira A, MacGillivray T, Trucco E, Chin KS, Zutis K, Lupascu C, et al. VAMPIRE: vessel assessment and measurement platform for images of the retina. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2011;2011:3391–4. https://doi.org/10.1109/iembs.2011.6090918.

Li H, Hsu W, Lee ML, Wong TY. Automatic grading of retinal vessel caliber. IEEE Trans Biomed Eng. 2005;52(7):1352–5. https://doi.org/10.1109/tbme.2005.847402.

Article  PubMed  Google Scholar 

Cheung CY, Hsu W, Lee ML, Wang JJ, Mitchell P, Lau QP, et al. A new method to measure peripheral retinal vascular caliber over an extended area. Microcirculation (New York, NY : 1994). 2010;17(7):495–503. https://doi.org/10.1111/j.1549-8719.2010.00048.x.

Article  Google Scholar 

Fraz MM, Welikala RA, Rudnicka AR, Owen CG, Strachan DP, Barman SA. QUARTZ: quantitative analysis of retinal vessel topology and size – an automated system for quantification of retinal vessels morphology. Expert Syst Appl. 2015;42(20):7221–34. https://doi.org/10.1016/j.eswa.2015.05.022.

Article  Google Scholar 

Shi D, Lin Z, Wang W, Tan Z, Shang X, Zhang X, et al. A deep learning system for fully automated retinal vessel measurement in high throughput image analysis. Frontiers in cardiovascular medicine. 2022;9: 823436. https://doi.org/10.3389/fcvm.2022.823436.

Article  PubMed  PubMed Central  Google Scholar 

Zhou Y, Wagner SK, Chia MA, Zhao A, Woodward-Court P, Xu M, et al. AutoMorph: automated retinal vascular morphology quantification via a deep learning pipeline. Translational vision science & technology. 2022;11(7): 12. https://doi.org/10.1167/tvst.11.7.12.

Article  Google Scholar 

Smith W, Wang JJ, Wong TY, Rochtchina E, Klein R, Leeder SR, et al. Retinal arteriolar narrowing is associated with 5-year incident severe hypertension: the Blue Mountains Eye study. Hypertension (Dallas, Tex : 1979). 2004;44(4):442–7. https://doi.org/10.1161/01.HYP.0000140772.40322.ec.

Article  CAS  PubMed  Google Scholar 

Wong TY, Kamineni A, Klein R, Sharrett AR, Klein BE, Siscovick DS, et al. Quantitative retinal venular caliber and risk of cardiovascular disease in older persons: the cardiovascular health study. Arch Intern Med. 2006;166(21):2388–94. https://doi.org/10.1001/archinte.166.21.2388.

Article  PubMed  Google Scholar 

Klein R, Knudtson MD, Klein BE, Zinman B, Gardiner R, Suissa S, et al. The relationship of retinal vessel diameter to changes in diabetic nephropathy structural variables in patients with type 1 diabetes. Diabetologia. 2010;53(8):1638–46. https://doi.org/10.1007/s00125-010-1763-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Klein BE, et al. Prediction of incident stroke events based on retinal vessel caliber: a systematic review and individual-participant meta-analysis. Am J Epidemiol. 2009;170(11):1323–32. https://doi.org/10.1093/aje/kwp306.

Article  PubMed  PubMed Central  Google Scholar 

Ikram MK, Janssen JA, Roos AM, Rietveld I, Witteman JC, Breteler MM, et al. Retinal vessel diameters and risk of impaired fasting glucose or diabetes: the Rotterdam study. Diabetes. 2006;55(2):506–10. https://doi.org/10.2337/diabetes.55.02.06.db05-0546.

Article  CAS  PubMed  Google Scholar 

Sun C, Ponsonby AL, Wong TY, Brown SA, Kearns LS, Cochrane J, et al. Effect of birth parameters on retinal vascular caliber: the Twins Eye Study in Tasmania. Hypertension (Dallas, Tex : 1979). 2009;53(3):487–93. https://doi.org/10.1161/hypertensionaha.108.125914.

Article  CAS  PubMed  Google Scholar 

Golubnitschaja O, Polivka J Jr, Potuznik P, Pesta M, Stetkarova I, Mazurakova A, et al. The paradigm change from reactive medical services to 3PM in ischemic stroke: a holistic approach utilising tear fluid multi-omics, mitochondria as a vital biosensor and AI-based multi-professional data interpretation. EPMA J. 2024;15(1):1–23. https://doi.org/10.1007/s13167-024-00356-6.

Article  PubMed  PubMed Central  Google Scholar 

Sim X, Jensen RA, Ikram MK, Cotch MF, Li X, MacGregor S, et al. Genetic loci for retinal arteriolar microcirculation. PLoS One. 2013;8(6): e65804. https://doi.org/10.1371/journal.pone.0065804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikram MK, Sim X, Jensen RA, Cotch MF, Hewitt AW, Ikram MA, et al. Four novel Loci (19q13, 6q24, 12q24, and 5q14) influence the microcirculation in vivo. PLoS Genet. 2010;6(10): e1001184. https://doi.org/10.1371/journal.pgen.1001184.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen RA, Sim X, Smith AV, Li X, Jakobsdóttir J, Cheng CY, et al. Novel genetic loci associated with retinal microvascular diameter. Circ Cardiovasc Genet. 2016;9(1):45–54. https://doi.org/10.1161/circgenetics.115.001142.

Article  CAS  PubMed  Google Scholar 

Jiang X, Hysi PG, Khawaja AP, Mahroo OA, Xu Z, Hammond CJ, et al. GWAS on retinal vasculometry phenotypes. PLoS Genet. 2023;19(2): e1010583. https://doi.org/10.1371/journal.pgen.1010583.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikram MK, Witteman JC, Vingerling JR, Breteler MM, Hofman A, de Jong PT. Retinal vessel diameters and risk of hypertension: the Rotterdam study. Hypertension (Dallas, Tex : 1979). 2006;47(2):189–94. https://doi.org/10.1161/01.Hyp.0000199104.61945.33.

Article  CAS  PubMed  Google Scholar 

Mulvany MJ. Are vascular abnormalities a primary cause or secondary consequence of hypertension? Hypertension (Dallas, Tex : 1979). 1991;18(3 Suppl):I52-7. https://doi.org/10.1161/01.hyp.18.3_suppl.i52.

Article  CAS  PubMed  Google Scholar 

Rizzoni D, Castellano M, Porteri E, Bettoni G, Muiesan ML, Agabiti-Rosei E. Vascular structural and functional alterations before and after the development of hypertension in SHR. Am J Hypertens. 1994;7(2):193–200. https://doi.org/10.1093/ajh/7.2.193.

Article  CAS  PubMed  Google Scholar 

Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104(6):735–40. https://doi.org/10.1161/hc3101.091158.

Article  CAS  PubMed  Google Scholar 

Serné EH, de Jongh RT, Eringa EC, IJzerman RG, Stehouwer CD. Microvascular dysfunction: a potential pathophysiological role in the metabolic syndrome. Hypertension (Dallas, Tex : 1979). 2007;50(1):204–11. https://doi.org/10.1161/hypertensionaha.107.089680.

Kang T, Zhou Y, Fan C, Zhang Y, Yang Y, Jiang J. Genetic association of lipid traits and lipid-related drug targets with normal tension glaucoma: a Mendelian randomization study for predictive preventive and personalized medicine. EPMA J. 2024;15(3):511–24. https://doi.org/10.1007/s13167-024-00373-5.

Article  PubMed  Google Scholar 

Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236–41. https://doi.org/10.1038/ng.3406.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun L, Wang Z, Lu T, Manolio TA, Paterson AD. eXclusionarY: 10 years later, where are the sex chromosomes in GWASs? Am J Hum Genet. 2023;110(6):903–12. https://doi.org/10.1016/j.ajhg.2023.04.009.

Article 

Comments (0)

No login
gif