Hakim AM. Small vessel disease. Front Neurol. 2019;10:1020. https://doi.org/10.3389/fneur.2019.01020.
Article PubMed PubMed Central Google Scholar
Berry C, Sidik N, Pereira AC, Ford TJ, Touyz RM, Kaski JC, et al. Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J Am Heart Assoc. 2019;8(3): e011104. https://doi.org/10.1161/jaha.118.011104.
Article PubMed PubMed Central Google Scholar
Zhou W, Sabel BA. Vascular dysregulation in glaucoma: retinal vasoconstriction and normal neurovascular coupling in altitudinal visual field defects. EPMA J. 2023;14(1):87–99. https://doi.org/10.1007/s13167-023-00316-6.
Article PubMed PubMed Central Google Scholar
Evsevieva M, Sergeeva O, Mazurakova A, Koklesova L, Prokhorenko-Kolomoytseva I, Shchetinin E, et al. Pre-pregnancy check-up of maternal vascular status and associated phenotype is crucial for the health of mother and offspring. EPMA J. 2022;13(3):351–66. https://doi.org/10.1007/s13167-022-00294-1.
Article PubMed PubMed Central Google Scholar
Perez-Rovira A, MacGillivray T, Trucco E, Chin KS, Zutis K, Lupascu C, et al. VAMPIRE: vessel assessment and measurement platform for images of the retina. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2011;2011:3391–4. https://doi.org/10.1109/iembs.2011.6090918.
Li H, Hsu W, Lee ML, Wong TY. Automatic grading of retinal vessel caliber. IEEE Trans Biomed Eng. 2005;52(7):1352–5. https://doi.org/10.1109/tbme.2005.847402.
Cheung CY, Hsu W, Lee ML, Wang JJ, Mitchell P, Lau QP, et al. A new method to measure peripheral retinal vascular caliber over an extended area. Microcirculation (New York, NY : 1994). 2010;17(7):495–503. https://doi.org/10.1111/j.1549-8719.2010.00048.x.
Fraz MM, Welikala RA, Rudnicka AR, Owen CG, Strachan DP, Barman SA. QUARTZ: quantitative analysis of retinal vessel topology and size – an automated system for quantification of retinal vessels morphology. Expert Syst Appl. 2015;42(20):7221–34. https://doi.org/10.1016/j.eswa.2015.05.022.
Shi D, Lin Z, Wang W, Tan Z, Shang X, Zhang X, et al. A deep learning system for fully automated retinal vessel measurement in high throughput image analysis. Frontiers in cardiovascular medicine. 2022;9: 823436. https://doi.org/10.3389/fcvm.2022.823436.
Article PubMed PubMed Central Google Scholar
Zhou Y, Wagner SK, Chia MA, Zhao A, Woodward-Court P, Xu M, et al. AutoMorph: automated retinal vascular morphology quantification via a deep learning pipeline. Translational vision science & technology. 2022;11(7): 12. https://doi.org/10.1167/tvst.11.7.12.
Smith W, Wang JJ, Wong TY, Rochtchina E, Klein R, Leeder SR, et al. Retinal arteriolar narrowing is associated with 5-year incident severe hypertension: the Blue Mountains Eye study. Hypertension (Dallas, Tex : 1979). 2004;44(4):442–7. https://doi.org/10.1161/01.HYP.0000140772.40322.ec.
Article CAS PubMed Google Scholar
Wong TY, Kamineni A, Klein R, Sharrett AR, Klein BE, Siscovick DS, et al. Quantitative retinal venular caliber and risk of cardiovascular disease in older persons: the cardiovascular health study. Arch Intern Med. 2006;166(21):2388–94. https://doi.org/10.1001/archinte.166.21.2388.
Klein R, Knudtson MD, Klein BE, Zinman B, Gardiner R, Suissa S, et al. The relationship of retinal vessel diameter to changes in diabetic nephropathy structural variables in patients with type 1 diabetes. Diabetologia. 2010;53(8):1638–46. https://doi.org/10.1007/s00125-010-1763-3.
Article CAS PubMed PubMed Central Google Scholar
McGeechan K, Liew G, Macaskill P, Irwig L, Klein R, Klein BE, et al. Prediction of incident stroke events based on retinal vessel caliber: a systematic review and individual-participant meta-analysis. Am J Epidemiol. 2009;170(11):1323–32. https://doi.org/10.1093/aje/kwp306.
Article PubMed PubMed Central Google Scholar
Ikram MK, Janssen JA, Roos AM, Rietveld I, Witteman JC, Breteler MM, et al. Retinal vessel diameters and risk of impaired fasting glucose or diabetes: the Rotterdam study. Diabetes. 2006;55(2):506–10. https://doi.org/10.2337/diabetes.55.02.06.db05-0546.
Article CAS PubMed Google Scholar
Sun C, Ponsonby AL, Wong TY, Brown SA, Kearns LS, Cochrane J, et al. Effect of birth parameters on retinal vascular caliber: the Twins Eye Study in Tasmania. Hypertension (Dallas, Tex : 1979). 2009;53(3):487–93. https://doi.org/10.1161/hypertensionaha.108.125914.
Article CAS PubMed Google Scholar
Golubnitschaja O, Polivka J Jr, Potuznik P, Pesta M, Stetkarova I, Mazurakova A, et al. The paradigm change from reactive medical services to 3PM in ischemic stroke: a holistic approach utilising tear fluid multi-omics, mitochondria as a vital biosensor and AI-based multi-professional data interpretation. EPMA J. 2024;15(1):1–23. https://doi.org/10.1007/s13167-024-00356-6.
Article PubMed PubMed Central Google Scholar
Sim X, Jensen RA, Ikram MK, Cotch MF, Li X, MacGregor S, et al. Genetic loci for retinal arteriolar microcirculation. PLoS One. 2013;8(6): e65804. https://doi.org/10.1371/journal.pone.0065804.
Article CAS PubMed PubMed Central Google Scholar
Ikram MK, Sim X, Jensen RA, Cotch MF, Hewitt AW, Ikram MA, et al. Four novel Loci (19q13, 6q24, 12q24, and 5q14) influence the microcirculation in vivo. PLoS Genet. 2010;6(10): e1001184. https://doi.org/10.1371/journal.pgen.1001184.
Article CAS PubMed PubMed Central Google Scholar
Jensen RA, Sim X, Smith AV, Li X, Jakobsdóttir J, Cheng CY, et al. Novel genetic loci associated with retinal microvascular diameter. Circ Cardiovasc Genet. 2016;9(1):45–54. https://doi.org/10.1161/circgenetics.115.001142.
Article CAS PubMed Google Scholar
Jiang X, Hysi PG, Khawaja AP, Mahroo OA, Xu Z, Hammond CJ, et al. GWAS on retinal vasculometry phenotypes. PLoS Genet. 2023;19(2): e1010583. https://doi.org/10.1371/journal.pgen.1010583.
Article CAS PubMed PubMed Central Google Scholar
Ikram MK, Witteman JC, Vingerling JR, Breteler MM, Hofman A, de Jong PT. Retinal vessel diameters and risk of hypertension: the Rotterdam study. Hypertension (Dallas, Tex : 1979). 2006;47(2):189–94. https://doi.org/10.1161/01.Hyp.0000199104.61945.33.
Article CAS PubMed Google Scholar
Mulvany MJ. Are vascular abnormalities a primary cause or secondary consequence of hypertension? Hypertension (Dallas, Tex : 1979). 1991;18(3 Suppl):I52-7. https://doi.org/10.1161/01.hyp.18.3_suppl.i52.
Article CAS PubMed Google Scholar
Rizzoni D, Castellano M, Porteri E, Bettoni G, Muiesan ML, Agabiti-Rosei E. Vascular structural and functional alterations before and after the development of hypertension in SHR. Am J Hypertens. 1994;7(2):193–200. https://doi.org/10.1093/ajh/7.2.193.
Article CAS PubMed Google Scholar
Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104(6):735–40. https://doi.org/10.1161/hc3101.091158.
Article CAS PubMed Google Scholar
Serné EH, de Jongh RT, Eringa EC, IJzerman RG, Stehouwer CD. Microvascular dysfunction: a potential pathophysiological role in the metabolic syndrome. Hypertension (Dallas, Tex : 1979). 2007;50(1):204–11. https://doi.org/10.1161/hypertensionaha.107.089680.
Kang T, Zhou Y, Fan C, Zhang Y, Yang Y, Jiang J. Genetic association of lipid traits and lipid-related drug targets with normal tension glaucoma: a Mendelian randomization study for predictive preventive and personalized medicine. EPMA J. 2024;15(3):511–24. https://doi.org/10.1007/s13167-024-00373-5.
Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236–41. https://doi.org/10.1038/ng.3406.
Article CAS PubMed PubMed Central Google Scholar
Sun L, Wang Z, Lu T, Manolio TA, Paterson AD. eXclusionarY: 10 years later, where are the sex chromosomes in GWASs? Am J Hum Genet. 2023;110(6):903–12. https://doi.org/10.1016/j.ajhg.2023.04.009.
Comments (0)