The 3PM transformation potential of minimal residual disease in solid tumor management: a bibliometric analysis and review

Brown PA, Wieduwilt M, Logan A, DeAngelo DJ, Wang ES, Fathi A, et al. Guidelines insights: acute lymphoblastic leukemia, Version 1.2019. J Natl Compr Canc Netw. 2019;17(5):414–23. https://doi.org/10.6004/jnccn.2019.0024.

Article  CAS  PubMed  Google Scholar 

Borst P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2012;2(5): 120066. https://doi.org/10.1098/rsob.120066.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5(7):516–25. https://doi.org/10.1038/nrc1650.

Article  CAS  PubMed  Google Scholar 

Badia-Ramentol J, Linares J, Gomez-Llonin A, Calon A. Minimal residual disease, metastasis and immunity. Biomolecules. 2021;11(2). https://doi.org/10.3390/biom11020130.

Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377(19):1836–46. https://doi.org/10.1056/NEJMoa1701830.

Article  PubMed  PubMed Central  Google Scholar 

Shen Q, Gong X, Feng Y, Hu Y, Wang T, Yan W, et al. Measurable residual disease (MRD)-testing in haematological cancers: a giant leap forward or sideways? Blood Rev. 2024;68: 101226. https://doi.org/10.1016/j.blre.2024.101226.

Article  CAS  PubMed  Google Scholar 

Prognostic importance of occult axillary lymph node micrometastases from breast cancers. International (Ludwig) Breast Cancer Study Group. The Lancet. 1990;335(8705):1565–8. Available: https://www.ncbi.nlm.nih.gov/pubmed/1972494.

Smokovski I, Steinle N, Behnke A, Bhaskar SMM, Grech G, Richter K, et al. Digital biomarkers: 3PM approach revolutionizing chronic disease management - EPMA 2024 position. EPMA J. 2024;15(2):149–62. https://doi.org/10.1007/s13167-024-00364-6.

Article  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O, Liskova A, Koklesova L, Samec M, Biringer K, Busselberg D, et al. Caution, “normal” BMI: health risks associated with potentially masked individual underweight-EPMA Position Paper 2021. EPMA J. 2021;12(3):243–64. https://doi.org/10.1007/s13167-021-00251-4.

Article  PubMed  PubMed Central  Google Scholar 

Pesta M, Mrazova B, Kapalla M, Kulda V, Gkika E, Golubnitschaja O. Mitochondria-based holistic 3PM approach as the ‘game-changer’ for individualised rehabilitation-the proof-of-principle model by treated breast cancer survivors. EPMA J. 2024;15(4):559–71. https://doi.org/10.1007/s13167-024-00386-0.

Article  PubMed  PubMed Central  Google Scholar 

Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. J Mach Learn Res. 2003;3(Jan):993–1022.

AlSumait L, Barbará D, Gentle J, Domeniconi C. Topic significance ranking of LDA generative models. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 67–82.

Traystman MD, Cochran GT, Hake SJ, Kuszynski CA, Mann SL, Murphy BJ, et al. Comparison of molecular cytokeratin 19 reverse transcriptase polymerase chain reaction (CK19 RT-PCR) and immunocytochemical detection of micrometastatic breast cancer cells in hematopoietic harvests. J Hematother. 1997;6(6):551–61. https://doi.org/10.1089/scd.1.1997.6.551.

Article  CAS  PubMed  Google Scholar 

Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904. https://doi.org/10.1158/1078-0432.CCR-04-0378.

Article  PubMed  Google Scholar 

Hartkopf AD, Wallwiener M, Hahn M, Fehm TN, Brucker SY, Taran FA. Simultaneous detection of disseminated and circulating tumor cells in primary breast cancer patients. Cancer Res Treat. 2016;48(1):115–24. https://doi.org/10.4143/crt.2014.287.

Article  CAS  PubMed  Google Scholar 

Andreopoulou E, Yang LY, Rangel KM, Reuben JM, Hsu L, Krishnamurthy S, et al. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest BreastCancer Select/Detect versus Veridex Cell Search system. Int J Cancer. 2012;130(7):1590–7. https://doi.org/10.1002/ijc.26111.

Article  CAS  PubMed  Google Scholar 

Philippron A, Depypere L, Oeyen S, De Laere B, Vandeputte C, Nafteux P, et al. Evaluation of a marker independent isolation method for circulating tumor cells in esophageal adenocarcinoma. PLoS ONE. 2021;16(5): e0251052. https://doi.org/10.1371/journal.pone.0251052.

Article  CAS  PubMed  PubMed Central  Google Scholar 

M Saini V, Oner E, Ward MP, Hurley S, Henderson BD, Lewis F, et al. A comparative study of circulating tumor cell isolation and enumeration technologies in lung cancer. Mol Oncol. 2024. https://doi.org/10.1002/1878-0261.13705.

Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90. https://doi.org/10.1038/nm.1789.

Article  CAS  PubMed  Google Scholar 

Hui Y, Wu Z, Qin Z, Zhu L, Liang J, Li X, et al. Micro-droplet digital polymerase chain reaction and real-time quantitative polymerase chain reaction technologies provide highly sensitive and accurate detection of zika virus. Virol Sin. 2018;33(3):270–7. https://doi.org/10.1007/s12250-018-0037-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A. 1999;96(16):9236–41. https://doi.org/10.1073/pnas.96.16.9236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huitiao L, Jianzhang P, Qun F. Development and application of digital PCR technology. Progress Chem. 2020;32(5):581–93. https://doi.org/10.7536/PC190913.

Article  Google Scholar 

Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(23):9530–5. https://doi.org/10.1073/pnas.1105422108.

Article  PubMed  PubMed Central  Google Scholar 

Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68. https://doi.org/10.1126/scitranslmed.3003726.

Article  CAS  PubMed  Google Scholar 

McDonald BR, Contente-Cuomo T, Sammut SJ, Odenheimer-Bergman A, Ernst B, Perdigones N, et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci Transl Med. 2019;11(504). https://doi.org/10.1126/scitranslmed.aax7392.

Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54. https://doi.org/10.1038/nm.3519.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34(5):547–55. https://doi.org/10.1038/nbt.3520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gobbini E, Swalduz A, Levra MG, Ortiz-Cuaran S, Toffart AC, Perol M, et al. Implementing ctDNA analysis in the clinic: challenges and opportunities in non-small cell lung cancer. Cancers (Basel). 2020;12(11). https://doi.org/10.3390/cancers12113112.

Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ, Sworder BJ, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol. 2021;39(12):1537–47. https://doi.org/10.1038/s41587-021-00981-w.

Gydush G, Nguyen E, Bae JH, Blewett T, Rhoades J, Reed SC, et al. Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth. Nat Biomed Eng. 2022;6(3):257–66. https://doi.org/10.1038/s41551-022-00855-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372(6538). https://doi.org/10.1126/science.aaw3616.

Moss J, Zick A, Grinshpun A, Carmon E, Maoz M, Ochana BL, et al. Circulating breast-derived DNA allows universal detection and monitoring of localized breast cancer. Ann Oncol. 2020;31(3):395–403. https://doi.org/10.1016/j.annonc.2019.11.014.

Article  CAS  PubMed  Google Scholar 

Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV, Consortium C. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020;31(6):745–59. https://doi.org/10.1016/j.annonc.2020.02.011.

Article  Google Scholar 

Suzuki M, Liao W, Wos F, Johnston AD, DeGrazia J, Ishii J, et al. Whole-genome bisulfite sequencing with improved accuracy and cost. Genome Res. 2018;28(9):1364–71. https://doi.org/10.1101/gr.232587.117.

Article  CAS 

Comments (0)

No login
gif