Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204.
Article CAS PubMed PubMed Central Google Scholar
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.
Article CAS PubMed PubMed Central Google Scholar
Misteli T, Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol. 2009;10(4):243–54.
Article CAS PubMed PubMed Central Google Scholar
Ferrand J, Plessier A, Polo SE. Control of the chromatin response to DNA damage: histone proteins pull the strings. Semin Cell Dev Biol. 2021;113:75–87.
Article CAS PubMed Google Scholar
Dabin J, Mori M, Polo SE. The DNA damage response in the chromatin context: A coordinated process. Curr Opin Cell Biol. 2023;82:102176.
Article CAS PubMed Google Scholar
Smerdon MJ, Lieberman MW. Nucleosome rearrangement in human chromatin during UV-induced DNA- Reapir synthesis. Proc Natl Acad Sci U S A. 1978;75(9):4238–41.
Article CAS PubMed PubMed Central Google Scholar
Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Muller WG, McNally JG, et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol. 2006;172(6):823–34.
Article CAS PubMed PubMed Central Google Scholar
Soria G, Polo SE, Almouzni G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell. 2012;46(6):722–34.
Article CAS PubMed Google Scholar
Belousova EA, Lavrik OI. The role of PARP1 and PAR in ATP-Independent nucleosome reorganisation during the DNA damage response. Genes (Basel). 2022;14(1).
Smith R, Zentout S, Rother M, Bigot N, Chapuis C, Mihut A, et al. HPF1-dependent histone ADP-ribosylation triggers chromatin relaxation to promote the recruitment of repair factors at sites of DNA damage. Nat Struct Mol Biol. 2023;30(5):678–91.
Article CAS PubMed Google Scholar
Kornberg RD. Structure of chromatin. Annu Rev Biochem. 1977;46:931–54.
Article CAS PubMed Google Scholar
Cutter AR, Hayes JJ. A brief review of nucleosome structure. FEBS Lett. 2015;589(20 Pt A):2914–22.
Article CAS PubMed PubMed Central Google Scholar
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60.
Article CAS PubMed Google Scholar
Simpson RT. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry. 1978;17(25):5524–31.
Article CAS PubMed Google Scholar
Zhou BR, Feng H, Kale S, Fox T, Khant H, de Val N, et al. Distinct structures and dynamics of chromatosomes with different human linker histone isoforms. Mol Cell. 2021;81(1):166–82. e6.
Article CAS PubMed Google Scholar
Hao F, Kale S, Dimitrov S, Hayes JJ. Unraveling linker histone interactions in nucleosomes. Curr Opin Struct Biol. 2021;71:87–93.
Article CAS PubMed PubMed Central Google Scholar
Bednar J, Garcia-Saez I, Boopathi R, Cutter AR, Papai G, Reymer A, et al. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1. Mol Cell. 2017;66(5):729.
Article CAS PubMed Google Scholar
Misteli T, Gunjan A, Hock R, Bustin M, Brown DT. Dynamic binding of histone H1 to chromatin in living cells. Nature. 2000;408(6814):877–81.
Article CAS PubMed Google Scholar
Lever MA, Th’ng JP, Sun X, Hendzel MJ. Rapid exchange of histone H1.1 on chromatin in living human cells. Nature. 2000;408(6814):873–6.
Article CAS PubMed Google Scholar
Flanagan TW, Brown DT. Molecular dynamics of histone H1. Biochim Biophys Acta. 2016;1859(3):468–75.
Article CAS PubMed Google Scholar
Allan J, Mitchell T, Harborne N, Bohm L, Crane-Robinson C. Roles of H1 domains in determining higher order chromatin structure and H1 location. J Mol Biol. 1986;187(4):591–601.
Article CAS PubMed Google Scholar
Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, et al. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci U S A. 1998;95(24):14173–8.
Article CAS PubMed PubMed Central Google Scholar
Lu X, Hamkalo B, Parseghian MH, Hansen JC. Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry. 2009;48(1):164–72.
Article CAS PubMed Google Scholar
Catez F, Brown DT, Misteli T, Bustin M. Competition between histone H1 and HMGN proteins for chromatin binding sites. EMBO Rep. 2002;3(8):760–6.
Article CAS PubMed PubMed Central Google Scholar
Fyodorov DV, Zhou BR, Skoultchi AI, Bai Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol. 2018;19(3):192–206.
Article CAS PubMed Google Scholar
Konishi A, Shimizu S, Hirota J, Takao T, Fan Y, Matsuoka Y, et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell. 2003;114(6):673–88.
Article CAS PubMed Google Scholar
Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A, van Attikum H, et al. DDB2 promotes chromatin decondensation at UV-induced DNA damage. J Cell Biol. 2012;197(2):267–81.
Article CAS PubMed PubMed Central Google Scholar
Strickfaden H, McDonald D, Kruhlak MJ, Haince JF, Th’ng JP, Rouleau M, et al. Poly(ADP-ribosyl)ation-dependent transient chromatin decondensation and histone displacement following laser microirradiation. J Biol Chem. 2016;291(4):1789–802.
Article CAS PubMed Google Scholar
Li Z, Li Y, Tang M, Peng B, Lu X, Yang Q, et al. Destabilization of linker histone H1.2 is essential for ATM activation and DNA damage repair. Cell Res. 2018;28(7):756–70.
Article CAS PubMed PubMed Central Google Scholar
Kraus WL. PARPs and ADP-Ribosylation: 50 years… and counting. Mol Cell. 2015;58(6):902–10.
Comments (0)