Artificial Intelligence in cancer epigenomics: a review on advances in pan-cancer detection and precision medicine

Cancer [Internet]. [cited 2025 Feb 28]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer

Prasanth BK, Alkhowaiter S, Sawarkar G, Dharshini BD, Baskaran RA. Unlocking Early Cancer Detection: Exploring Biomarkers, Circulating DNA, and Innovative Technological Approaches. Cureus. 2023;15:e51090.

PubMed  PubMed Central  Google Scholar 

Janku F. Tumor heterogeneity in the clinic: is it a real problem? Ther Adv Med Oncol. 2014;43:1.

Google Scholar 

Ibrahim J, Peeters M, Van Camp G, Op de Beeck K. Methylation biomarkers for early cancer detection and diagnosis: Current and future perspectives. Eur J Cancer. 2023;178:91–113.

Article  PubMed  Google Scholar 

Taryma-Leśniak O, Sokolowska KE, Wojdacz TK. Current status of development of methylation biomarkers for in vitro diagnostic IVD applications. Clin Epigenetics. 2020;12:1–16. https://doi.org/10.1186/s13148-020-00886-6.

Article  Google Scholar 

Yu X, Zhao H, Wang R, Chen Y, Ouyang X, Li W, et al. Cancer epigenetics: from laboratory studies and clinical trials to precision medicine. Cell Death Dis. 2024;10:1–12.

Google Scholar 

Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007;16:R50-9. https://doi.org/10.1093/hmg/ddm018.

Article  PubMed  Google Scholar 

Li L, Sun Y. Circulating tumor DNA methylation detection as biomarker and its application in tumor liquid biopsy: advances and challenges. MedComm. 2024;5:1.

Article  Google Scholar 

Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372:1.

Article  Google Scholar 

Lakshminarasimhan R, Liang G. The Role of DNA Methylation in Cancer. Adv Exp Med Biol. 2016;945:151.

Article  PubMed  PubMed Central  Google Scholar 

Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021;13:152.

Article  PubMed  PubMed Central  Google Scholar 

Thedinga K, Herwig R. A gradient tree boosting and network propagation derived pan-cancer survival network of the tumor microenvironment. iScience. 2022;25:103617.

Article  PubMed  Google Scholar 

Kisiel JB, Ebbert JO, Taylor WR, Marinac CR, Choudhry OA, Rego SP, et al. Shifting the Cancer Screening Paradigm: Developing a Multi-Biomarker Class Approach to Multi-Cancer Early Detection Testing Life. Basel: Multidisciplinary Digital Publishing Institute (MDPI); 2024.

Google Scholar 

Miller SJ, Sly JR, Rolfo C, Mack P, Villanueva A, Mazor M, et al. Multi-cancer early detection (MCED) tests: prioritizing equity from bench to bedside. Health Affairs Scholar. 2024. https://doi.org/10.1093/haschl/qxae039.

Article  PubMed  PubMed Central  Google Scholar 

Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cognit Comput. 2024;16:45–74. https://doi.org/10.1007/s12559-023-10179-8.

Article  Google Scholar 

Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2009;1:27–36.

Google Scholar 

Oldenhuis CNAM, Oosting SF, Gietema JA, de Vries EGE. Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer. 2008;44:946–53.

Article  PubMed  Google Scholar 

Rezkitha YAA, Panenggak NSR, Lusida MI, Rianda RV, Mahmudah I, Pradana AD, et al. Detecting colorectal cancer using genetic and epigenetic biomarkers: screening and diagnosis. J Med Life. 2024;2024:4–14.

Google Scholar 

Anghel SA, Ioniță-Mîndrican CB, Luca I, Pop AL. Promising Epigenetic Biomarkers for the Early Detection of Colorectal Cancer: A Systematic Review. Cancers (Basel). 2021;1:13.

Google Scholar 

Wu D, Zhou G, Jin P, Zhu J, Li S, Wu Q, et al. Detection of Colorectal Cancer Using a Simplified SEPT9 Gene Methylation Assay Is a Reliable Method for Opportunistic Screening. J Mol Diagnost. 2016;18:535–45.

Article  Google Scholar 

Palanca-Ballester C, Rodriguez-Casanova A, Torres S, Calabuig-Fariñas S, Exposito F, Serrano D, et al. Cancer epigenetic biomarkers in liquid biopsy for high incidence malignancies. Cancers (Basel). 2021;13:3016.

Article  PubMed  Google Scholar 

Abolghasemi Fard A, Mahmoodzadeh A. Unraveling the Progression of Colon Cancer Pathogenesis Through Epigenetic Alterations and Genetic Pathways. Cureus. 2024;1:1.

Google Scholar 

Sheaffer KL, Elliott EN, Kaestner KH. DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prevent Res. 2016;9:534–46.

Article  Google Scholar 

Zhang C, Sheng Q, Zhao N, Huang S, Zhao Y. DNA hypomethylation mediates immune response in pan-cancer. Epigenetics. 2023;18:1.

Article  Google Scholar 

Liu C, Tang H, Hu N, Li T. Methylomics and cancer: the current state of methylation profiling and marker development for clinical care. Cancer Cell Int. 2023;1:1.

Google Scholar 

Gu X, Huang X, Zhang X, Wang C. Development and Validation of a DNA Methylation-related Classifier of Circulating Tumour Cells to Predict Prognosis and to provide a therapeutic strategy in Lung Adenocarcinoma. Int J Biol Sci. 2022;18:4984–5000.

Article  PubMed  PubMed Central  Google Scholar 

Lee W, Kim S, An J, Kim T-K, Cha H, Chang H, et al. Tristetraprolin regulates phagocytosis through interaction with CD47 in head and neck cancer. Exp Ther Med. 2022;24:1.

Article  Google Scholar 

Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE, et al. Human Breast Cancer CpG Islands Increases with Malignant Progression in ′ 5 Aberrant Methylation of the Estrogen Receptor and E-Cadherin E-mail alerts Aberrant Methylation of the Estrogen Receptor and E-Cadherin 5 CpG Islands Increases with Malignant Progression in Human Breast Cancer 1 [Internet]. Cancer Res Downloaded from. 2000. Available from: http://cancerres.aacrjournals.org/content/60/16/4346

Detection of Aberrant Promoter Hypermethylation of Tumor Suppressor Genes in Serum DNA from Non-Small Cell Lung Cancer Patients1 | Cancer Research | American Association for Cancer Research [Internet]. [cited 2025 Mar 24]. Available from: https://aacrjournals.org/cancerres/article/59/1/67/505065/Detection-of-Aberrant-Promoter-Hypermethylation-of

Luo J, Chen S, Chen J, Zhou Y, He F, Wang E. Identification and validation of DNA methylation markers to predict axillary lymph node metastasis of breast cancer. PLoS One. 2022;17:1.

Article  Google Scholar 

Wen DS, Huang LC, Bu XY, He MK, Lai ZC, Du ZF, et al. DNA methylation-activated full-length EMX1 facilitates metastasis through EMX1-EGFR-ERK axis in hepatocellular carcinoma. Cell Death Dis. 2023;14:1.

Article  Google Scholar 

Zhu D, Zeng S, Su C, Li J, Xuan Y, Lin Y, et al. The interaction between DNA methylation and tumor immune microenvironment: from the laboratory to clinical applications. Clin Epigenetics. 2024;16:1.

Article  Google Scholar 

Zhu D, Zeng S, Su C, Li J, Xuan Y, Lin Y, et al. The interaction between DNA methylation and tumor immune microenvironment: from the laboratory to clinical applications. Clin Epigenet. 2024;2024:1.

Google Scholar 

Zhang C, Guo L, Su Z, Luo N, Tan Y, Xu P, et al. Tumor Immune Microenvironment Landscape in Glioma Identifies a Prognostic and Immunotherapeutic Signature. Front Cell Dev Biol. 2021;9:1.

Google Scholar 

Yu R, Huang X, Lin J, Lin S, Shen G, Chen W. Bioinformatics analysis based on DNA methylation data identified in lung adenocarcinoma subgroups with different immune characteristics and clinical outcomes. J Thorac Dis. 2023;15:2184–97.

Article  PubMed  PubMed Central  Google Scholar 

Antonios P-S, Aldape K. Annual Review of Pathology: Mechanisms of Disease DNA Methylation Profiling: An Emerging Paradigm for Cancer Diagnosis. Downloaded from www.annualreviews.org Guest (guest [Internet]. 2024;09:19. Available from: https://doi.org/10.1146/annurev-pathol-042220-

Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation. Epigenet Chrom. 2016;9:1–16. https://doi.org/10.1186/s13072-016-0075-3.

Article  Google Scholar 

Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet. 2010;11:191–203.

Article  PubMed  Google Scholar 

Rauluseviciute I, Drabløs F, Rye MB. DNA methylation data by sequencing: Experimental approaches and recommendations for tools and pipelines for data analysis. Clin Epigeneti. 2019;2019:1.

Google Scholar 

Liu Q, Fang L, Yu G, Wang D, Le Xiao C, Wang K. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat Commun. 2019;10:1.

Google Scholar 

Sahoo K, Sundararajan V. Methods in DNA methylation array dataset analysis: A review. Comput Struct Biotechnol J. 2024;1:2304–25.

Article  Google Scholar 

Gao Y, Zhao H, An K, Liu Z, Hai L, Li R, et al. Whole-genome bisulfite sequencing analysis of circulating tumour DNA for the detection and molecular classification of cancer. Clin Transl Med. 2022;1:12.

Google Scholar 

Carrizosa-Molina T, Casillas-Díaz N, Pérez-Nadador I, Vales-Villamarín C, López-Martínez MÁ, Riveiro-Álvarez R, et al. Methylation analysis by targeted bisulfite sequencing in large for gestational age (LGA) newborns: the LARGAN cohort. Clin Epigenet. 2023;15:1.

Article  Google Scholar 

Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc. 2011;6:468–81.

Article  PubMed  Google Scholar 

Staunstrup NH, Starnawska A, Nyegaard M, Christiansen L, Nielsen AL, Børglum A, et al. Genome-wide DNA methylation profiling with MeDIP-seq using archived dried blood spots. Clin Epigenet. 2016;8:1.

Article  Google Scholar 

Vandenhoeck J, Neefs I, Vanpoucke T, Ibrahim J, Suls A, Peet

Comments (0)

No login
gif