Palmieri R, Candoni A, Di Raimondo F et al (2025) Navigating acute myeloid leukemia towards better outcomes: treatment pathways and challenges for patients ineligible for intensive chemotherapy. Blood Rev 101288. https://doi.org/10.1016/j.blre.2025.101288
Shimony S, Stahl M, Stone RM (2025) Acute myeloid leukemia: 2025 update on diagnosis, risk-stratification, and management. Am J Hematol 100:860–891. https://doi.org/10.1002/ajh.27625
Article CAS PubMed PubMed Central Google Scholar
Pratz KW, Jonas BA, Pullarkat V et al (2024) Long-term follow-up of VIALE-A: venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia. Am J Hematol 99:615–624. https://doi.org/10.1002/ajh.27246
Article CAS PubMed Google Scholar
Wei AH, Döhner H, Pocock C et al (2020) Oral azacitidine maintenance therapy for acute myeloid leukemia in first remission. N Engl J Med 383:2526–2537. https://doi.org/10.1056/NEJMoa2004444
Article CAS PubMed Google Scholar
DiNardo CD, Jonas BA, Pullarkat V et al (2020) Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med 383:617–629. https://doi.org/10.1056/NEJMoa2012971
Article CAS PubMed Google Scholar
Siegel RL, Kratzer TB, Giaquinto AN et al (2025) Cancer statistics, 2025. CA Cancer J Clin 75:10–45. https://doi.org/10.3322/caac.21871
Article PubMed PubMed Central Google Scholar
Sperotto A, Bochicchio MT, Simonetti G et al (2023) Measurable residual disease and clonal evolution in acute myeloid leukemia from diagnosis to post-transplant follow-up: the role of next-generation sequencing. Biomed 11:359. https://doi.org/10.3390/biomedicines11020359
Kim N, Hahn S, Choi YJ et al (2024) Comprehensive insights into AML relapse: genetic mutations, clonal evolution, and clinical outcomes. Cancer Cell Int 24:174. https://doi.org/10.1186/s12935-024-03368-4
Article CAS PubMed PubMed Central Google Scholar
Han HJ, Choi K, Suh HS (2024) Impact of aging on acute myeloid leukemia epidemiology and survival outcomes: a real-world, population-based longitudinal cohort study. PLoS ONE 19:e0300637. https://doi.org/10.1371/journal.pone.0300637
Article CAS PubMed PubMed Central Google Scholar
Zhao L, Zhao J, Zhong K et al (2022) Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 7. https://doi.org/10.1038/s41392-022-00966-4
Li X, Song Y (2020) Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J Hematol Oncol 13. https://doi.org/10.1186/s13045-020-00885-3
Chen C, Feng Y, Zhou C et al (2024) Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 153. https://doi.org/10.1016/j.bioorg.2024.107772
Hu Y, Yan Y, Wang J et al (2024) Molecular glue degrader for tumor treatment. Front Oncol 14. https://doi.org/10.3389/fonc.2024.1512666
Long X, Zhao L, Li G, et al (2021) Identification of GSPT1 as prognostic biomarker and promoter of malignant colon cancer cell phenotypes via the GSK-3β/CyclinD1 pathway. Aging 13. https://doi.org/10.18632/aging.202796
Sellar RS, Sperling AS, Stabicki M et al (2022) Degradation of GSPT1 causes TP53-independent cell death in leukemia while sparing normal hematopoietic stem cells. J Clin Invest 132
Matyskiela ME, Lu G, Ito T et al (2016) A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535. https://doi.org/10.1038/nature18611
Chengdu FenDi Pharmaceutical Co., Ltd. (2024) A phase I clinical trial to evaluate the safety, tolerability, pharmacokinetics, and initial efficacy of FD-001 in patients with relapsed or refractory hematological malignancies. https://clinicaltrials.gov. Accessed 12 Mar 2025
Celgene (2024) A phase 1, open-label, dose finding study of CC-90009, a novel cereblon E3 ligase modulating drug, in subjects with relapsed or refractory acute myeloid leukemia or relapsed or refractory higher-risk myelodysplastic syndromes. https://clinicaltrials.gov. Accessed 12 Mar 2025
Monte Rosa Therapeutics, Inc (2025) A phase 1/2 study of oral MRT-2359 in patients with MYC-Driven and other selected solid tumors including lung cancer and diffuse B-Cell lymphoma. https://clinicaltrials.gov. Accessed 12 Mar 2025
Biotheryx, Inc. (2023) An open label, escalating multiple dose study to evaluate the safety, toxicity, pharmacokinetics, and preliminary activity of BTX-1188 in subjects with advanced malignancies. https://clinicaltrials.gov. Accessed 12 Mar 2025
Paudel RR, Lu D, Chowdhury SR et al (2023) Targeted protein degradation via lysosomes. Biochem 62. https://doi.org/10.1021/acs.biochem.2c00310
Hsia O, Hinterndorfer M, Cowan AD et al (2024) Targeted protein degradation via intramolecular bivalent glues. Nature 627. https://doi.org/10.1038/s41586-024-07089-6
Neklesa TK, Winkler JD, Crews CM (2017) Targeted protein degradation by PROTACs. Pharmacol Ther 174. https://doi.org/10.1016/j.pharmthera.2017.02.027
Surka C, Jin L, Mbong N et al (2021) CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 137:661–677. https://doi.org/10.1182/blood.2020008676
Article CAS PubMed PubMed Central Google Scholar
Liu S, Qiao X, Wu S et al (2022) c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia. Apoptosis: Int J Program Cell Death 27. https://doi.org/10.1007/s10495-022-01756-7
Lasica M, Anderson MA (2021) Review of venetoclax in CLL, AML and multiple myeloma. J Pers Med 11:463. https://doi.org/10.3390/jpm11060463
Article PubMed PubMed Central Google Scholar
Nwosu GO, Ross DM, Powell JA, Pitson SM (2024) Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis 15:413. https://doi.org/10.1038/s41419-024-06810-7
Article PubMed PubMed Central Google Scholar
Nishida Y, Ishizawa J, Ayoub E, et al (2023) Enhanced TP53 reactivation disrupts MYC transcriptional program and overcomes venetoclax resistance in acute myeloid leukemias. Sci Adv 9:eadh1436. https://doi.org/10.1126/sciadv.adh1436
Röhner L, Ng YLD, Scheffold A et al (2021) Generation of a lenalidomide-sensitive syngeneic murine in vivo multiple myeloma model by expression of CrbnI391V. Exp Hematol 93. https://doi.org/10.1016/j.exphem.2020.11.004
Comments (0)