Exploring the influence of laser parameters on retropulsion and ablation rate in thulium fiber laser lithotripsy: an in vitro study

Johnson DE, Cromeens DM, Price RE (1992) Use of the holmium:YAG laser in urology. Lasers Surg Med 12(4):353–363. https://doi.org/10.1002/lsm.1900120402

Article  CAS  PubMed  Google Scholar 

Traxer O, Keller EX (2020) Thulium fiber laser: the new player for kidney stone treatment? A comparison with holmium:YAG laser. World J Urol 38(8):1883–1894. https://doi.org/10.1007/s00345-019-02654-5

Article  CAS  PubMed  Google Scholar 

Taratkin M, Laukhtina E, Singla N et al (2021) How lasers ablate stones: in vitro study of laser lithotripsy (Ho:YAG and Tm-fiber lasers) in different environments. J Endourol 35(6):931–936. https://doi.org/10.1089/end.2019.0441

Article  PubMed  Google Scholar 

Gu R, Li Z, Lei C et al (2023) Thulium-doped fiber laser and its application in urinary lithotripsy. J Med Biol Eng 43(4):351–361. https://doi.org/10.1007/s40846-023-00813-z

Article  Google Scholar 

Basulto-Martinez M, Proietti S, Pavia MP et al (2023) Understanding the ablation rate of holmium:YAG and thulium fiber lasers. Perspectives from an in vitro study. Urolithiasis 51(1):32. https://doi.org/10.1007/s00240-022-01402-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panthier F, Germain T, Gorny C et al (2021) Laser fiber displacement velocity during Tm-fiber and Ho:YAG laser lithotripsy: introducing the concept of optimal displacement velocity. J Clin Med. https://doi.org/10.3390/jcm11010181

Article  PubMed  PubMed Central  Google Scholar 

Andreeva V, Vinarov A, Yaroslavsky I et al (2020) Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World J Urol 38(2):497–503. https://doi.org/10.1007/s00345-019-02785-9

Article  CAS  PubMed  Google Scholar 

Marks AJ, Teichman JMH (2007) Lasers in clinical urology: state of the art and new horizons. World J Urol 25(3):227–233. https://doi.org/10.1007/s00345-007-0163-x

Article  PubMed  Google Scholar 

Blackmon RL, Irby PB, Fried NM (2011) Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt 16(7):071403. https://doi.org/10.1117/1.3564884

Article  CAS  PubMed  Google Scholar 

Chicaud M, Kutchukian S, Berthe L et al (2024) In vitro comparison of pulsed-thulium:YAG, holmium:YAG, and thulium fiber laser. J Endourol 38(12):1427–1435. https://doi.org/10.1089/end.2024.0424

Article  PubMed  Google Scholar 

Shen Z, Liang J, Xie L et al (2024) Ablation efficiency and laser safety of a novel superpulsed thulium fiber laser: a in vitro study. World J Urol. https://doi.org/10.1007/s00345-024-05266-w

Article  PubMed  PubMed Central  Google Scholar 

Bader MJ, Pongratz T, Khoder W et al (2014) Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World J Urol 33(4):471–477. https://doi.org/10.1007/s00345-014-1429-8

Article  PubMed  PubMed Central  Google Scholar 

Esch E, Simmons WN, Sankin G et al (2010) A simple method for fabricating artificial kidney stones of different physical properties. Urol Res 38(4):315–319. https://doi.org/10.1007/s00240-010-0298-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hardy L, Wilson C, Irby P et al (2014) Thulium fiber laser lithotripsy in an in vitro ureter model. J Biomed Opt 19(12):128001. https://doi.org/10.1117/1.JBO.19.12.128001

Article  PubMed  Google Scholar 

Chen J, Mishra A, Medairos R et al (2023) In vitro investigation of stone ablation efficiency, char formation, spark generation, and damage mechanism produced by thulium fiber laser. Urolithiasis 51(1):124. https://doi.org/10.1007/s00240-023-01501-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soto-Palou F, Chen J, Medairos R et al (2023) In pursuit of the optimal dusting settings with the thulium fiber laser: an in vitro assessment. J Endourol 37(8):914–920. https://doi.org/10.1089/end.2023.0168

Article  PubMed  PubMed Central  Google Scholar 

Yang B, Ray A, Zhang JJ et al (2023) Stone ablation efficacy: a comparison of a thulium fibre laser and two pulse-modulated holmium:YAG lasers. Urolithiasis 51(1):31. https://doi.org/10.1007/s00240-022-01393-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martov AG, Ergakov DV, Guseinov MA et al (2018) Initial experience in clinical application of thulium laser contact lithotripsy for transurethral treatment of urolithiasis. Urologiia 1:112–120. https://doi.org/10.18565/urology.2018.1.112-120

Article  Google Scholar 

Sierra A, Corrales M, Piñero A et al (2022) Thulium fiber laser pre-settings during ureterorenoscopy: Twitter’s experts’ recommendations. World J Urol 40(6):1529–1535. https://doi.org/10.1007/s00345-022-03966-9

Article  PubMed  Google Scholar 

Yamashita S, Maruyama Y, Tasaka Y et al (2022) Comparison of stone retropulsion between Moses mode and virtual basket mode: an in vitro study using artificial stones. Urolithiasis 50(4):493–499. https://doi.org/10.1007/s00240-022-01335-0

Article  PubMed  Google Scholar 

Scott NJ, Cilip CM, Fried NM (2009) Thulium fiber laser ablation of urinary stones through small-core optical fibers. IEEE J Sel Top Quantum Electron 15(2):435–440. https://doi.org/10.1109/jstqe.2008.2012133

Article  CAS  Google Scholar 

Aldoukhi AH, Roberts WW, Hall TL et al (2019) Watch your distance: the role of laser fiber working distance on fragmentation when altering pulse width or modulation. J Endourol 33(2):120–126. https://doi.org/10.1089/end.2018.0572

Article  PubMed  Google Scholar 

Ventimiglia E, Doizi S, Kovalenko A et al (2020) Effect of temporal pulse shape on urinary stone phantom retropulsion rate and ablation efficiency using holmium:YAG and super-pulse thulium fibre lasers. BJU Int. ed2020. 159–167. https://doi.org/10.1111/bju.15079

Liu M, Peng Y, Wang Z et al (2021) Ablation efficiency of a novel thulium fiber laser: an in vitro study on laser setting and fiber usage. J Endourol 35(8):1211–1216. https://doi.org/10.1089/end.2020.1116

Article  PubMed  Google Scholar 

Ventimiglia E, Robesti D, Keller EX et al (2024) Temperature profile during endourological laser activation: introducing the thermal safety distance concept. World J Urol. https://doi.org/10.1007/s00345-024-05162-3

Article  PubMed  PubMed Central  Google Scholar 

Hardy LA, Vinnichenko V, Fried NM (2019) High power holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies. Lasers Surg Med 51(6):522–530. https://doi.org/10.1002/lsm.23057

Article  PubMed  Google Scholar 

Kayaroganam P (2021) Response surface methodology in engineering science. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.96271

Comments (0)

No login
gif