Wang W, Zhang X, Zhang M et al (2024) Extreme temperature events, “Life’s Essential 8”, and prevalence of chronic kidney disease: a nationally representative surveillance in China. Environ Int. https://doi.org/10.1016/j.envint.2024.109176
Article PubMed PubMed Central Google Scholar
Son J-Y, Liu JC, Bell ML (2019) Temperature-related mortality: a systematic review and investigation of effect modifiers. Environ Res Lett. https://doi.org/10.1088/1748-9326/ab1cdb
Song X, Wang S, Hu Y et al (2017) Impact of ambient temperature on morbidity and mortality: an overview of reviews. Sci Total Environ 586:241–254. https://doi.org/10.1016/j.scitotenv.2017.01.212
Article CAS PubMed Google Scholar
Guo J, Ruan Y, Wang Y et al (2024) Maternal exposure to extreme cold events and risk of congenital heart defects: a large multicenter study in China. Environ Sci Technol 58(8):3737–3746. https://doi.org/10.1021/acs.est.3c10306
Article CAS PubMed Google Scholar
Luna-Cerón E, Pherez-Farah A, Krishnan-Sivadoss I et al (2024) Molecular challenges and opportunities in climate change-induced kidney diseases. Biomolecules. https://doi.org/10.3390/biom14030251
Article PubMed PubMed Central Google Scholar
Qu Y, Zhang W, Boutelle A-YM et al (2023) Associations between ambient extreme heat exposure and emergency department visits related to kidney disease. Am J Kidney Dis 81(5):507-516.e1. https://doi.org/10.1053/j.ajkd.2022.09.005
Hossain MP, Goyder EC, Rigby JE et al (2009) CKD and poverty: a growing global challenge. Am J Kidney Dis 53(1):166–174. https://doi.org/10.1053/j.ajkd.2007.10.047
Francis A, Harhay MN, Ong ACM et al (2024) Chronic kidney disease and the global public health agenda: an international consensus. Nat Rev Nephrol 20(7):473–485. https://doi.org/10.1038/s41581-024-00820-6
Olowu WA, Niang A, Osafo C et al (2016) Outcomes of acute kidney injury in children and adults in sub-Saharan Africa: a systematic review. Lancet Glob Health 4(4):e242–e250. https://doi.org/10.1016/S2214-109X(15)00322-8
G.B.D.R.F. Collaborators (2024) Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403(10440):2162–2203. https://doi.org/10.1016/S0140-6736(24)00933-4
Diseases GBD, Injuries C (2024) Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403(10440):2133–2161. https://doi.org/10.1016/S0140-6736(24)00757-8
G.B.D.C.K.D. Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 395(10225):709–733. https://doi.org/10.1016/S0140-6736(20)30045-3
Duncan BB, Thome FS, Vos T (2024) The global burden of disease study—a kidney disease data base. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfae136
Burkart KG, Brauer M, Aravkin AY et al (2021) Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the global burden of disease study. Lancet 398(10301):685–697. https://doi.org/10.1016/S0140-6736(21)01700-1
Article PubMed PubMed Central Google Scholar
Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049. https://doi.org/10.1002/qj.3803
Johnson SC, Cunningham M, Dippenaar IN et al (2021) Public health utility of cause of death data: applying empirical algorithms to improve data quality. BMC Med Inform Decis Mak. https://doi.org/10.1186/s12911-021-01501-1
Article PubMed PubMed Central Google Scholar
Murray CJL, Lopez AD (1999) On the comparable quantification of health risks: lessons from the global burden of disease study. Epidemiology 10(5):594–605. https://doi.org/10.1097/00001648-199909000-00029
Article CAS PubMed Google Scholar
He L, Xue B, Wang B et al (2022) Impact of high, low, and non-optimum temperatures on chronic kidney disease in a changing climate, 1990–2019: a global analysis. Environ Res 212(Pt A):113172. https://doi.org/10.1016/j.envres.2022.113172
Article CAS PubMed PubMed Central Google Scholar
Fay MP, Tiwari RC, Feuer EJ et al (2006) Estimating average annual percent change for disease rates without assuming constant change. Biometrics 62(3):847–854. https://doi.org/10.1111/j.1541-0420.2006.00528.x
Moreno-Betancur M, Latouche A, Menvielle G et al (2015) Relative index of inequality and slope index of inequality: a structured regression framework for estimation. Epidemiology 26(4):518–527. https://doi.org/10.1097/ede.0000000000000311
Mubarik S, Yu Y, Wang F et al (2022) Epidemiological and sociodemographic transitions of female breast cancer incidence, death, case fatality and DALYs in 21 world regions and globally, from 1990 to 2017: an age-period-cohort analysis. J Adv Res 37:185–196. https://doi.org/10.1016/j.jare.2021.07.012
Luo L (2013) Assessing validity and application scope of the intrinsic estimator approach to the age-period-cohort problem. Demography 50(6):1945–1967. https://doi.org/10.1007/s13524-013-0243-z
Das Gupta P (1994) Standardization and decomposition of rates from cross-classified data. Genus 50(3–4):171–96
Gupta PD (1993) Standardization and decomposition of rates: a users’s manual. Bureau of the Census, Washington D.C.
Zhao Q, Guo Y, Ye T et al (2021) Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Health 5(7):e415–e425. https://doi.org/10.1016/S2542-5196(21)00081-4
Guo Y, Gasparrini A, Armstrong B et al (2014) Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology 25(6):781–789. https://doi.org/10.1097/EDE.0000000000000165
Article PubMed PubMed Central Google Scholar
N.C.F.E. (2024) Information, 2023 was the world’s warmest year on record, by far, 2024. https://www.ncei.noaa.gov/news/reporting-state-climate-2023. Accessed 10 Oct 2024.
Samset BH, Fuglestvedt JS, Lund MT (2020) Delayed emergence of a global temperature response after emission mitigation. Nat Commun 11(1):3261. https://doi.org/10.1038/s41467-020-17001-1
Article CAS PubMed PubMed Central Google Scholar
Ebi KL, Capon A, Berry P et al (2021) Hot weather and heat extremes: health risks. Lancet 398(10301):698–708. https://doi.org/10.1016/S0140-6736(21)01208-3
Wang W, Wang F, Yang C et al (2024) Associations between heat waves and chronic kidney disease in China: the modifying role of land cover. Environ Int 186:108657. https://doi.org/10.1016/j.envint.2024.108657
Liu J, Varghese BM, Hansen A et al (2021) Hot weather as a risk factor for kidney disease outcomes: A systematic review and meta-analysis of epidemiological evidence. Sci Total Environ 801:149806. https://doi.org/10.1016/j.scitotenv.2021.149806
Article CAS PubMed Google Scholar
Lopez-Bueno JA, Diaz J, Padron-Monedero A et al (2023) Short-term impact of extreme temperatures, relative humidity and air pollution on emergency hospital admissions due to kidney disease and kidney-related conditions in the Greater Madrid area (Spain). Sci Total Environ 903:166646. https://doi.org/10.1016/j.scitotenv.2023.166646
Comments (0)