B. Fromenty, M. Roden, Mitochondrial alterations in fatty liver diseases. J. Hepatol. 78, 415–429 (2023). https://doi.org/10.1016/j.jhep.2022.09.020.
Article CAS PubMed Google Scholar
C.M. Perdomo, I. Avilés-Olmos, D. Dicker, G. Frühbeck, Towards an adiposity-related disease framework for the diagnosis and management of obesities. Rev. Endocr. Metab. Disord. 24, 795–807 (2023). https://doi.org/10.1007/s11154-023-09797-2.
Article PubMed PubMed Central Google Scholar
B. Ahmed, R. Sultana, M.W. Greene, Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 137, 111315 (2021). https://doi.org/10.1016/j.biopha.2021.111315.
Article CAS PubMed Google Scholar
M. Longo, F. Zatterale, J. Naderi, L. Parrillo, P. Formisano, G.A. Raciti, F. Beguinot, C. Miele, Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. IJMS 20, 2358 (2019). https://doi.org/10.3390/ijms20092358.
Article CAS PubMed PubMed Central Google Scholar
Y. Gong, J. Yang, S. Wei, R. Yang, L. Gao, S. Shao, J. Zhao, Lipotoxicity suppresses the synthesis of growth hormone in pituitary somatotrophs via endoplasmic reticulum stress. J. Cell. Mol. Med. 25, 5250–5259 (2021). https://doi.org/10.1111/jcmm.16532.
Article CAS PubMed PubMed Central Google Scholar
Y.-C. Tsai, N.E. Cooke, S.A. Liebhaber, Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster. Nucleic Acids Res. 44, 4651–4664 (2016). https://doi.org/10.1093/nar/gkw090.
Article CAS PubMed PubMed Central Google Scholar
J.K. Perry, Z.-S. Wu, H.C. Mertani, T. Zhu, P.E. Lobie, Tumour-derived human growth hormone as a therapeutic target in oncology. Trends Endocrinol. Metab. 28, 587–596 (2017). https://doi.org/10.1016/j.tem.2017.05.003.
Article CAS PubMed Google Scholar
J.D. Veldhuis, T.P. Olson, P.Y. Takahashi, J.M. Miles, M.J. Joyner, R.J. Yang, J. Wigham, Multipathway modulation of exercise and glucose stress effects upon GH secretion in healthy men. Metabolism 64, 1022–1030 (2015). https://doi.org/10.1016/j.metabol.2015.05.008.
Article CAS PubMed PubMed Central Google Scholar
M. Caputo, S. Pigni, E. Agosti, T. Daffara, A. Ferrero, N. Filigheddu, F. Prodam, Regulation of GH and GH signaling by nutrients. Cells 10, 1376 (2021). https://doi.org/10.3390/cells10061376.
Article CAS PubMed PubMed Central Google Scholar
Z. Huang, L. Huang, M.J. Waters, C. Chen, Insulin and growth hormone balance: implications for obesity. Trends Endocrinol. Metab. 31, 642–654 (2020). https://doi.org/10.1016/j.tem.2020.04.005.
Article CAS PubMed Google Scholar
D.B. Wilson, D.P. Wyatt, Immunocytochemical effects of thyroxine stimulation on the adenohypophysis of dwarf (dw) mutant mice. Cell Tissue Res. 274, 579–585 (1993). https://doi.org/10.1007/BF00314556.
Article CAS PubMed Google Scholar
A.V. McNamara, R. Awais, H. Momiji, L. Dunham, K. Featherstone, C.V. Harper, A.A. Adamson, S. Semprini, N.A. Jones, D.G. Spiller, J.J. Mullins, B.F. Finkenstädt, D. Rand, M.R.H. White, J.R.E. Davis, Transcription factor Pit-1 affects transcriptional timing in the dual-promoter human prolactin gene. Endocrinology 162, bqaa249 (2021). https://doi.org/10.1210/endocr/bqaa249.
Article CAS PubMed PubMed Central Google Scholar
M. Delhase, P. Vergani, A. Malur, B. Velkeniers, E. Teugels, J. Trouillas, E.L. Hooghe-Peters, Pit-1/GHF-1 expression in pituitary adenomas: further analogy between human adenomas and rat SMtTW tumours. J. Mol. Endocrinol. 11, 129–139 (1993). https://doi.org/10.1677/jme.0.0110129.
Article CAS PubMed Google Scholar
P. Gergics, C. Smith, H. Bando, A.A.L. Jorge, D. Rockstroh-Lippold, S.A. Vishnopolska, F. Castinetti, M. Maksutova, L.R.S. Carvalho, J. Hoppmann, J. Martínez Mayer, F. Albarel, D. Braslavsky, A. Keselman, I. Bergadá, M.A. Martí, A. Saveanu, A. Barlier, R. Abou Jamra, M.H. Guo, A. Dauber, M. Nakaguma, B.B. Mendonca, S.N. Jayakody, A.B. Ozel, Q. Fang, Q. Ma, J.Z. Li, T. Brue, M.I. Pérez Millán, I.J.P. Arnhold, R. Pfaeffle, J.O. Kitzman, S.A. Camper, High-throughput splicing assays identify missense and silent splice-disruptive POU1F1 variants underlying pituitary hormone deficiency. Am. J. Hum. Genet. 108, 1526–1539 (2021). https://doi.org/10.1016/j.ajhg.2021.06.013.
Article CAS PubMed PubMed Central Google Scholar
C. Gil-Puig, S. Seoane, M. Blanco, M. Macia, T. Garcia-Caballero, C. Segura, R. Perez-Fernandez, Pit-1 is expressed in normal and tumorous human breast and regulates GH secretion and cell proliferation. Eur. J. Endocrinol. 153, 335–344 (2005). https://doi.org/10.1530/eje.1.01962.
Article CAS PubMed Google Scholar
D.M. Simmons, J.W. Voss, H.A. Ingraham, Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors., (n.d.).
H.J. Mangalam, V.R. Albert, H.A. Ingraham, M. Kapiloff, L. Wilson, C. Nelson, H. Elsholtz, M.G. Rosenfeld, A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev. 3, 946–958 (1989). https://doi.org/10.1101/gad.3.7.946.
Article CAS PubMed Google Scholar
P.A. Cattini, X. Yang, Y. Jin, K.A. Detillieux, Regulation of the human growth hormone gene family: possible role for Pit-1 in early stages of pituitary-specific expression and repression. Neuroendocrinology 83, 145–153 (2006). https://doi.org/10.1159/000095522.
Article CAS PubMed Google Scholar
A.L. Slusher, M.J. McAllister, C.-J. Huang, A therapeutic role for vitamin D on obesity-associated inflammation and weight-loss intervention. Inflamm. Res. 64, 565–575 (2015). https://doi.org/10.1007/s00011-015-0847-4.
Article CAS PubMed Google Scholar
A. Li, B. Yi, H. Han, S. Yang, Z. Hu, L. Zheng, J. Wang, Q. Liao, H. Zhang, Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway. Autophagy 18, 877–890 (2022). https://doi.org/10.1080/15548627.2021.1962681.
Article CAS PubMed Google Scholar
J. Marcotorchino, E. Gouranton, B. Romier, F. Tourniaire, J. Astier, C. Malezet, M. Amiot, J. Landrier, Vitamin D reduces the inflammatory response and restores glucose uptake in adipocytes. Mol. Nutr. Food Res. 56, 1771–1782 (2012). https://doi.org/10.1002/mnfr.201200383.
Article CAS PubMed Google Scholar
A.H. Faghfouri, E. Faghfuri, V. Maleki, L. Payahoo, A. Balmoral, Y. Khaje Bishak, A comprehensive insight into the potential roles of VDR gene polymorphism in obesity: a systematic review. Arch. Physiol. Biochem. 128, 1645–1657 (2022). https://doi.org/10.1080/13813455.2020.1788097.
Article CAS PubMed Google Scholar
K.E. Wong, J. Kong, W. Zhang, F.L. Szeto, H. Ye, D.K. Deb, M.J. Brady, Y.C. Li, Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J. Biol. Chem. 286, 33804–33810 (2011).
Article CAS PubMed PubMed Central Google Scholar
C.J. Narvaez, D. Matthews, E. Broun, M. Chan, J. Welsh, Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling Protein-1 in white adipose tissue. Endocrinology 150, 651–661 (2009). https://doi.org/10.1210/en.2008-1118.
Article CAS PubMed Google Scholar
Y. Xu, Y. Lou, J. Kong, VDR regulates energy metabolism by modulating remodeling in adipose tissue. Eur. J. Pharmacol. 865, 172761 (2019). https://doi.org/10.1016/j.ejphar.2019.172761.
Article CAS PubMed Google Scholar
R. Parsanathan, S.K. Jain, Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice. Sci. Rep. 9, 14784 (2019). https://doi.org/10.1038/s41598-019-51377-5.
Article CAS PubMed PubMed Central Google Scholar
G. Muscogiuri, B. Altieri, C. De Angelis, S. Palomba, R. Pivonello, A. Colao, F
Comments (0)