M.A. Butt, S.N. Khonina, N.L. Kazanskiy, Plasmonics: a necessity in the field of sensing-a review (Invited). Fiber Integr. Opt. (2021). https://doi.org/10.1080/01468030.2021.1902590
N.L. Kazanskiy, S.N. Khonina, M.A. Butt, Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Physica E: Low-Dimens. Syst. Nanostruct. (2019). https://doi.org/10.1016/j.physe.2019.113798
B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983). https://doi.org/10.1016/0250-6874(83)85036-7
D.R. Shankaran, K.V. Gobi, N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuat. B Chem. (2007). https://doi.org/10.1016/j.snb.2006.09.014
S.A. Maier, Plasmonics: Fundamentals and applications (Springer, Appl., 2007), pp.1–223
K. Matsubara, S. Kawata, S. Minami, Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 27, 1160–1163 (1988). https://doi.org/10.1364/AO.27.001160
D.J. Webb, Research activities arising from the University of Kent. Photon. Sens. 1, 140–151 (2011). https://doi.org/10.1007/s13320-011-0030-7
S. Thongrattanasiri, F.H.L. Koppens, F.J. García De Abajo, Complete optical absorption in periodically patterned Graphene. Phys. Rev. Lett. 108, 047401 (2012). https://doi.org/10.1103/PhysRevLett.108.047401
S.K. Mishra, B. Zou, K.S. Chiang, Surface-plasmon-resonance refractive-index sensor with Cu-coated polymer waveguide. IEEE Photon. Technol. Lett. (2016). https://doi.org/10.1109/LPT.2016.2573322
J. Ma, K. Liu, J. Jiang, T. Xu, S. Wang, P. Chang, Z. Zhang, J. Zhang, T. Liu, Theoretical and experimental investigation of an all-fiber waveguide coupled surface plasmon resonance sensor with Au-ZnO-Au sandwich structure. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2955471
L. Ji, S. Yang, R. Shi, Y. Fu, J. Su, C. Wu, Polymer waveguide coupled surface plasmon refractive index sensor: a theoretical study. Photon. Sens. 10, 353–363 (2020). https://doi.org/10.1007/s13320-020-0589-y
M.A. Butt, N.L. Kazanskiy, S.N. Khonina, Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes. Curr. Appl. Phys. 20, 1274–1280 (2020). https://doi.org/10.1016/j.cap.2020.08.020
A.A. Alwahib, R.J. Al-Azawi, A.S. Hasan, Theory and modeling of slab waveguide based surface plasmon resonance. Eng. Technol. J. 40, 1082–1089 (2022). https://doi.org/10.30684/etj.2022.132295.1100
A. Abbas, M.J. Linman, Q. Cheng, New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens. Bioelectron. 26, 1815–1824 (2011). https://doi.org/10.1016/j.bios.2010.09.030
C. Zhang, C.-J. Chen, K. Settu, J.-T. Liu, Angle-scanning surface plasmon resonance system with 3D printed components for biorecognition investigation. Hindawi Adv. Condens. Matter Phys. (2018). https://doi.org/10.1155/2018/5654010
W. Luo, R. Wang, H. Li, J. Kou, X. Zeng, H. Huang, X. Hu, W. Huang, Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors. Opt. Express 27, 576–589 (2019). https://doi.org/10.1364/OE.27.000576
M. Piliarik, H. Vaisocherová, J. Homola, A new surface plasmon resonance sensor for high-throughput screening applications. Biosens. Bioelectron. 20, 2104–2110 (2005). https://doi.org/10.1016/j.bios.2004.09.025
M. Polyanskiy, (2008–2020). Refractive Index. Available at: https://refractiveindex.info (accessed on 10/08/2021).
H.K. Rouf, T. Haque, Sensitivity enhancement of graphene-MoSe2–based SPR sensor using Ti adhesion layer for detecting biological analytes. Plasmonics 16(2), 1945–1954 (2021). https://doi.org/10.1007/s11468-021-01445-2
Comments (0)