Defected core matched residual dispersion slope non-linear high birefringent photonic crystal fiber

B. Hossain, E. Podder, Design and investigation of pcf-based blood components sensor in terahertz regime, Applied Physics A 125 (11 2019). https://doi.org/10.1007/s00339-019-3164-x

M. Hossain, R. Laizu, M. Hossain, Design and development of photonic crystal fiber for application of milk purity detection: an approach of performance analysis. Opt. Quant. Electron. (2024). https://doi.org/10.1007/s11082-024-07210-z

Article  Google Scholar 

A. Ferdous, M.S. Anower, A. Musha, M. Habib, M.A. Shobug, A heptagonal pcf-based oil sensor to detect fuel adulteration using terahertz spectrum. Sens. Bio-Sens. Res. 36, 100485 (2022). https://doi.org/10.1016/j.sbsr.2022.100485

Article  Google Scholar 

M.A. Sewidan, M.A. Othman, M.A. Swillam, High birefringence photonic crystal fiber for glucose sensing. Opt. Quant. Electron. 55(14), 1218 (2023)

Article  Google Scholar 

A. Shariar, M.H. Milan, Ultrahigh effective mode area photonic crystal fibers with extremely low bending loss for long distance transmission application. Sens. Bio-Sens. Res. 47, 100734 (2025)

Article  Google Scholar 

R.H. Jibon, A.A.-M. Bulbul, A.-A. Nahid, O.S. Faragallah, M. Baz, M.M. Eid, A.N.Z. Rashed, Design and numerical analysis of a photonic crystal fiber (pcf)-based flattened dispersion thz waveguide. Opt. Rev. 28(5), 564–572 (2021)

Article  Google Scholar 

P.S.J. Russell, 14 - photonic crystal fibers: basics and applications, in: I.P. Kaminow, T. Li, A.E. Willner (Eds.), Optical Fiber Telecommunications V A (Fifth Edition), fifth Edition, Optics and Photonics, Academic Press, Burlington, pp. 485–522 (2008). https://doi.org/10.1016/B978-0-12-374171-4.00014-9. https://www.sciencedirect.com/science/article/pii/B9780123741714000149

M.M. Haque, M. Rahman, M.S. Habib, M.S. Habib, S.M. Razzak, A new circular photonic crystal fiber for effective dispersion compensation over e to l wavelength bands. J. Microwaves Optoelectron. 12, 44–54 (2013). https://doi.org/10.1590/S2179-10742013000200004

Article  Google Scholar 

D. Novoa, N. Y. Joly, Specialty photonic crystal fibers and their applications, Crystals 11 (7) (2021). https://doi.org/10.3390/cryst11070739. https://www.mdpi.com/2073-4352/11/7/739

A. Shah, R. Kumar, A Review on Photonic Crystal Fibers, pp. 1241–1249 (2020)

L. Chu Van, K. Dinh Xuan, T. Le Canh, T. Thai Doan, T. Nguyen Thi, H. Van Le, V. T. Hoang, Supercontinuum generation in chalcogenide photonic crystal fiber infiltrated with liquid. Opt. Mater. 137, 113547 (2023). https://doi.org/10.1016/j.optmat.2023.113547. https://www.sciencedirect.com/science/article/pii/S0925346723001192

S.R. Tahhan, A. Mastin, I.K. Yakasai, A. Atieh, K. Ahmed, F.M. Bui, F.A. Al-Zahrani, Highly nonlinear tellurite photonic crystal fiber for supercontinuum generation: design and quantitative performance analysis. Alexandria Eng. J. 81, 626–635 (2023)

Article  Google Scholar 

K.-Y. Yang, Y.-F. Chou Chau, Y.-W. Huang, H.-Y. Yeh, D.P. Tsai, Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding. J. Appl. Phys. 109, 093103–093103 (2011). https://doi.org/10.1063/1.3583560

Article  ADS  Google Scholar 

S. Kumar Pandey, Y. Kumar Prajapati, J. Maurya, Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss. Results Opt. 1, 100024 (2020). https://doi.org/10.1016/j.rio.2020.100024. https://www.sciencedirect.com/science/article/pii/S2666950120300249

F. Li, M. He, X. Zhang, M. Chang, Z. Wu, Ultra-high birefringence and nonlinearity photonic crystal fiber with a nanoscale core shaped by an air slot and silicon strips. Opt. Fiber Technol. 54, 102082 (2020)

E. Akowuah, P. Agbemabiese, A. Amoah, Ultra-high birefringence with tuneable double zero chromatic dispersion-pcf: a theoretical analysis, Journal of Electrical Systems and Information Technology 10 (04 2023). https://doi.org/10.1186/s43067-023-00093-2

A. Halder, M.S. Anower, Relative dispersion slope matched highly birefringent and highly nonlinear dispersion compensating hybrid photonic crystal fiber. Photon. Nanostruct.- Fundamentals Appl. 35, 100704 (2019). https://doi.org/10.1016/j.photonics.2019.100704

Article  Google Scholar 

S. K. Biswas, S. R. Islam, M. R. Islam, M. M. A. Mia, S. Sayem, F. Ahmed, Design of an ultrahigh birefringence photonic crystal fiber with large nonlinearity using all circular air holes for a fiber-optic transmission system, in: Photonics, Vol. 5, MDPI, p. 26 (2018)

P. K, R. Malavika, Highly birefringent photonic crystal fiber with hybrid cladding. Opt. Fiber Technol. 47, 21–26 (2019) https://doi.org/10.1016/j.yofte.2018.11.015

Z. Liu, J. Wen, Z. Zhou, Y. Dong, T. Yang, A highly birefringent photonic crystal fiber with three rows of circular air holes, Photonics 10 (5) (2023). https://doi.org/10.3390/photonics10050527. https://www.mdpi.com/2304-6732/10/5/527

M.A. Allam, T.A. Ali, N.H. Rafat, Broadband dispersion compensation and high birefringence photonic crystal fiber for cwdm/dwdm networks. Opt. Quant. Electron. 56(6), 1023 (2024)

Article  ADS  Google Scholar 

Sellmeier, Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen. Annalen der Physik 219(6), 272–282 (1871). https://doi.org/10.1002/andp.18712190612. https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18712190612

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. Knight, C. Brito Cruz, H. Fragnito, Field enhancement within an optical fibre with a subwavelength air core. Nat. Photonics 1 115–118 (2007). https://doi.org/10.1038/nphoton.2006.81

S.F. Kaijage, Y. Namihira, N.H. Hai, F. Begum, S.M.A. Razzak, T. Kinjo, K. Miyagi, N. Zou, Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications. Japanese J. Appl. Phys. 48(5R), 052401 (2009). https://doi.org/10.1143/JJAP.48.052401

Article  ADS  Google Scholar 

F. Begum, Y. Namihira, S. M. Razzak, N. Zou, Novel square photonic crystal fibers with ultra-flattened chromatic dispersion and low confinement losses, IEICE Transactions on Electronics E90C (03 2007). https://doi.org/10.1093/ietele/e90-c.3.607

K. Saitoh, M. Koshiba, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11(23), 3100–3109 (2003). https://doi.org/10.1364/OE.11.003100. https://opg.optica.org/oe/abstract.cfm?URI=oe-11-23-3100

K. Mondal, Design of simple circular photonic crystal fiber having ultra-large negative dispersion and high birefringence for dispersion compensation. Opt. Quant. Electron. 56(10), 1726 (2024)

Article  Google Scholar 

Comments (0)

No login
gif