Characterization and purification of Pseudomonas aeruginosa phages for the treatment of canine infections

Yoshimura F, Nikaido H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol. 1982;152(2):636–42. https://doi.org/10.1128/jb.152.2.636-642.1982.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor PK, Yeung ATY, Hancock REW. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol. 2014;191:121–30. https://doi.org/10.1016/j.jbiotec.2014.09.003.

Article  CAS  PubMed  Google Scholar 

Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis. 2013;13(1):47. https://doi.org/10.1186/1471-2334-13-47.

Article  PubMed  PubMed Central  Google Scholar 

Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the society of infectious diseases pharmacists. Pharmacotherapy. 2003;23(7):916–24. https://doi.org/10.1592/phco.23.7.916.32722.

Article  CAS  PubMed  Google Scholar 

Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa– Mechanisms, epidemiology and evolution. Drug Resist Updates. 2019;44:100640. https://doi.org/10.1016/j.drup.2019.07.002.

Article  Google Scholar 

Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol. 2021;19(5):331–42. https://doi.org/10.1038/s41579-020-00477-5.

Article  CAS  PubMed  Google Scholar 

Ibberson CB, Whiteley M. The social life of microbes in chronic infection. Curr Opin Microbiol. 2020;53:44–50. https://doi.org/10.1016/j.mib.2020.02.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandes MR, Sellera FP, Moura Q, Carvalho MPN, Rosato PN, Cerdeira L, et al. Zooanthroponotic transmission of Drug-Resistant Pseudomonas aeruginosa, Brazil. Emerg Infect Dis. 2018;24(6):1160–2. https://doi.org/10.3201/eid2406.180335.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soonthornsit J, Pimwaraluck K, Kongmuang N, Pratya P, Phumthanakorn N. Molecular epidemiology of antimicrobial-resistant Pseudomonas aeruginosa in a veterinary teaching hospital environment. Vet Res Commun. 2023;47(1):73–86. https://doi.org/10.1007/s11259-022-09929-0.

Article  PubMed  Google Scholar 

Abo-Kamar AM, Mustafa A-E-RA, Al-Madboly LA. Purified α-Amylase from Bacillus cereus exhibits antibiofilm and antiquorum sensing activities against uropathogenic Escherichia coli, downregulating FimH, and PapC virulence genes: implications for urinary tract infections. BMC Microbiol. 2024;24(1):502. https://doi.org/10.1186/s12866-024-03542-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh A, Dowd SE, Zurek L. Dogs leaving the ICU carry a very large Multi-Drug resistant enterococcal population with capacity for biofilm formation and horizontal gene transfer. PLoS ONE. 2011;6(7):e22451. https://doi.org/10.1371/journal.pone.0022451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ljungquist O, Ljungquist D, Myrenås M, Rydén C, Finn M, Bengtsson B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs– a pilot study. Infect Ecol Epidemiol. 2016;6(1):31514. https://doi.org/10.3402/iee.v6.31514.

Article  PubMed  Google Scholar 

Walther B, Tedin K, Lübke-Becker A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet Microbiol. 2017;200:71–8. https://doi.org/10.1016/j.vetmic.2016.05.017.

Article  PubMed  Google Scholar 

Morris DO, Davis MF, Palmeiro BS, O’Shea K, Rankin SC. Molecular and epidemiological characterization of canine Pseudomonas otitis using a prospective case-control study design. Vet Dermatol. 2017;28(1):118–e25. https://doi.org/10.1111/vde.12347.

Article  PubMed  Google Scholar 

de Sousa T, Machado S, Caniça M, Ramos MJN, Santos D, Ribeiro M, et al. Pseudomonas aeruginosa: one health approach to Deciphering hidden relationships in Northern Portugal. J Appl Microbiol. 2025;136(2). https://doi.org/10.1093/jambio/lxaf037.

Organization GWH, WHO Bacterial Priority Pathogens List., 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. CC BY-NC-SA 3.0 IGO; 2024.

Ludwig C, de Jong A, Moyaert H, El Garch F, Janes R, Klein U, et al. Antimicrobial susceptibility monitoring of dermatological bacterial pathogens isolated from diseased dogs and cats across Europe (ComPath results). J Appl Microbiol. 2016;121(5):1254–67. https://doi.org/10.1111/jam.13287.

Article  CAS  PubMed  Google Scholar 

Hattab J, Mosca F, Di Francesco CE, Aste G, Marruchella G, Guardiani P, et al. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Vet World. 2021;14(4):978–85. https://doi.org/10.14202/vetworld.2021.978-985.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin-Bastuji B, et al. Assessment of listing and categorisation of animal diseases within the framework of the animal health law (Regulation (EU) 2016/429): antimicrobial-resistant Pseudomonas aeruginosa in dogs and cats. Efsa J. 2022;20(5):e07310. https://doi.org/10.2903/j.efsa.2022.7310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tkhilaishvili T, Wang L, Tavanti A, Trampuz A, Di Luca M. Antibacterial efficacy of two commercially available bacteriophage formulations, Staphylococcal bacteriophage and PYO bacteriophage, against Methicillin-Resistant Staphylococcus aureus: prevention and eradication of biofilm formation and control of a systemic infection of galleria Mellonella larvae. Front Microbiol. 2020;11:110. https://doi.org/10.3389/fmicb.2020.00110.

Article  PubMed  PubMed Central  Google Scholar 

Broncano-Lavado A, Santamaría-Corral G, Esteban J, García-Quintanilla M. Advances in bacteriophage therapy against relevant MultiDrug-Resistant pathogens. Antibiot (Basel). 2021;10(6). https://doi.org/10.3390/antibiotics10060672.

de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock REW. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol. 2013;16(5):580–9. https://doi.org/10.1016/j.mib.2013.06.013.

Article  CAS  PubMed  Google Scholar 

Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32. https://doi.org/10.1016/j.ijantimicag.2009.12.011.

Article  CAS  PubMed  Google Scholar 

Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob. 2020;19(1):45. https://doi.org/10.1186/s12941-020-00389-5.

Article  PubMed  PubMed Central  Google Scholar 

Ghatbale P, Sah GP, Dunham S, Khong E, Blanc A, Monsibais A, et al. In vitro resensitization of multidrug-resistant clinical isolates of Enterococcus faecium and E. faecalis through phage-antibiotic synergy. Antimicrob Agents Chemother. 2025;69(2):e0074024. https://doi.org/10.1128/aac.00740-24.

Article  CAS  PubMed  Google Scholar 

Chanishvili N. Bacteriophages as therapeutic and prophylactic means: summary of the Soviet and post Soviet experiences. Curr Drug Deliv. 2016;13(3):309–23. https://doi.org/10.2174/156720181303160520193946.

Article  CAS  PubMed  Google Scholar 

Arumugam SN, Manohar P, Sukumaran S, Sadagopan S, Loh B, Leptihn S, et al. Antibacterial efficacy of lytic phages against multidrug-resistant Pseudomonas aeruginosa infections in bacteraemia mice models. BMC Microbiol. 2022;22(1):187. https://doi.org/10.1186/s12866-022-02603-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, et al. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother. 2007;51(2):446–52. https://doi.org/10.1128/aac.00635-06.

Article  CAS  PubMed  Google Scholar 

McVay CS, Velasquez M, Fralick JA. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother. 2007;51(6):1934–8. https://doi.org/10.1128/AAC.01028-06.

Article 

Comments (0)

No login
gif