Yoshimura F, Nikaido H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol. 1982;152(2):636–42. https://doi.org/10.1128/jb.152.2.636-642.1982.
Article CAS PubMed PubMed Central Google Scholar
Taylor PK, Yeung ATY, Hancock REW. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol. 2014;191:121–30. https://doi.org/10.1016/j.jbiotec.2014.09.003.
Article CAS PubMed Google Scholar
Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis. 2013;13(1):47. https://doi.org/10.1186/1471-2334-13-47.
Article PubMed PubMed Central Google Scholar
Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the society of infectious diseases pharmacists. Pharmacotherapy. 2003;23(7):916–24. https://doi.org/10.1592/phco.23.7.916.32722.
Article CAS PubMed Google Scholar
Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa– Mechanisms, epidemiology and evolution. Drug Resist Updates. 2019;44:100640. https://doi.org/10.1016/j.drup.2019.07.002.
Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol. 2021;19(5):331–42. https://doi.org/10.1038/s41579-020-00477-5.
Article CAS PubMed Google Scholar
Ibberson CB, Whiteley M. The social life of microbes in chronic infection. Curr Opin Microbiol. 2020;53:44–50. https://doi.org/10.1016/j.mib.2020.02.003.
Article CAS PubMed PubMed Central Google Scholar
Fernandes MR, Sellera FP, Moura Q, Carvalho MPN, Rosato PN, Cerdeira L, et al. Zooanthroponotic transmission of Drug-Resistant Pseudomonas aeruginosa, Brazil. Emerg Infect Dis. 2018;24(6):1160–2. https://doi.org/10.3201/eid2406.180335.
Article CAS PubMed PubMed Central Google Scholar
Soonthornsit J, Pimwaraluck K, Kongmuang N, Pratya P, Phumthanakorn N. Molecular epidemiology of antimicrobial-resistant Pseudomonas aeruginosa in a veterinary teaching hospital environment. Vet Res Commun. 2023;47(1):73–86. https://doi.org/10.1007/s11259-022-09929-0.
Abo-Kamar AM, Mustafa A-E-RA, Al-Madboly LA. Purified α-Amylase from Bacillus cereus exhibits antibiofilm and antiquorum sensing activities against uropathogenic Escherichia coli, downregulating FimH, and PapC virulence genes: implications for urinary tract infections. BMC Microbiol. 2024;24(1):502. https://doi.org/10.1186/s12866-024-03542-8.
Article CAS PubMed PubMed Central Google Scholar
Ghosh A, Dowd SE, Zurek L. Dogs leaving the ICU carry a very large Multi-Drug resistant enterococcal population with capacity for biofilm formation and horizontal gene transfer. PLoS ONE. 2011;6(7):e22451. https://doi.org/10.1371/journal.pone.0022451.
Article CAS PubMed PubMed Central Google Scholar
Ljungquist O, Ljungquist D, Myrenås M, Rydén C, Finn M, Bengtsson B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs– a pilot study. Infect Ecol Epidemiol. 2016;6(1):31514. https://doi.org/10.3402/iee.v6.31514.
Walther B, Tedin K, Lübke-Becker A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet Microbiol. 2017;200:71–8. https://doi.org/10.1016/j.vetmic.2016.05.017.
Morris DO, Davis MF, Palmeiro BS, O’Shea K, Rankin SC. Molecular and epidemiological characterization of canine Pseudomonas otitis using a prospective case-control study design. Vet Dermatol. 2017;28(1):118–e25. https://doi.org/10.1111/vde.12347.
de Sousa T, Machado S, Caniça M, Ramos MJN, Santos D, Ribeiro M, et al. Pseudomonas aeruginosa: one health approach to Deciphering hidden relationships in Northern Portugal. J Appl Microbiol. 2025;136(2). https://doi.org/10.1093/jambio/lxaf037.
Organization GWH, WHO Bacterial Priority Pathogens List., 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. CC BY-NC-SA 3.0 IGO; 2024.
Ludwig C, de Jong A, Moyaert H, El Garch F, Janes R, Klein U, et al. Antimicrobial susceptibility monitoring of dermatological bacterial pathogens isolated from diseased dogs and cats across Europe (ComPath results). J Appl Microbiol. 2016;121(5):1254–67. https://doi.org/10.1111/jam.13287.
Article CAS PubMed Google Scholar
Hattab J, Mosca F, Di Francesco CE, Aste G, Marruchella G, Guardiani P, et al. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Vet World. 2021;14(4):978–85. https://doi.org/10.14202/vetworld.2021.978-985.
Article CAS PubMed PubMed Central Google Scholar
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin-Bastuji B, et al. Assessment of listing and categorisation of animal diseases within the framework of the animal health law (Regulation (EU) 2016/429): antimicrobial-resistant Pseudomonas aeruginosa in dogs and cats. Efsa J. 2022;20(5):e07310. https://doi.org/10.2903/j.efsa.2022.7310.
Article CAS PubMed PubMed Central Google Scholar
Tkhilaishvili T, Wang L, Tavanti A, Trampuz A, Di Luca M. Antibacterial efficacy of two commercially available bacteriophage formulations, Staphylococcal bacteriophage and PYO bacteriophage, against Methicillin-Resistant Staphylococcus aureus: prevention and eradication of biofilm formation and control of a systemic infection of galleria Mellonella larvae. Front Microbiol. 2020;11:110. https://doi.org/10.3389/fmicb.2020.00110.
Article PubMed PubMed Central Google Scholar
Broncano-Lavado A, Santamaría-Corral G, Esteban J, García-Quintanilla M. Advances in bacteriophage therapy against relevant MultiDrug-Resistant pathogens. Antibiot (Basel). 2021;10(6). https://doi.org/10.3390/antibiotics10060672.
de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock REW. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol. 2013;16(5):580–9. https://doi.org/10.1016/j.mib.2013.06.013.
Article CAS PubMed Google Scholar
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32. https://doi.org/10.1016/j.ijantimicag.2009.12.011.
Article CAS PubMed Google Scholar
Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob. 2020;19(1):45. https://doi.org/10.1186/s12941-020-00389-5.
Article PubMed PubMed Central Google Scholar
Ghatbale P, Sah GP, Dunham S, Khong E, Blanc A, Monsibais A, et al. In vitro resensitization of multidrug-resistant clinical isolates of Enterococcus faecium and E. faecalis through phage-antibiotic synergy. Antimicrob Agents Chemother. 2025;69(2):e0074024. https://doi.org/10.1128/aac.00740-24.
Article CAS PubMed Google Scholar
Chanishvili N. Bacteriophages as therapeutic and prophylactic means: summary of the Soviet and post Soviet experiences. Curr Drug Deliv. 2016;13(3):309–23. https://doi.org/10.2174/156720181303160520193946.
Article CAS PubMed Google Scholar
Arumugam SN, Manohar P, Sukumaran S, Sadagopan S, Loh B, Leptihn S, et al. Antibacterial efficacy of lytic phages against multidrug-resistant Pseudomonas aeruginosa infections in bacteraemia mice models. BMC Microbiol. 2022;22(1):187. https://doi.org/10.1186/s12866-022-02603-0.
Article CAS PubMed PubMed Central Google Scholar
Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, et al. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother. 2007;51(2):446–52. https://doi.org/10.1128/aac.00635-06.
Article CAS PubMed Google Scholar
McVay CS, Velasquez M, Fralick JA. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother. 2007;51(6):1934–8. https://doi.org/10.1128/AAC.01028-06.
Comments (0)