OpenAI. ChatGPT [Internet]. ChatGPT. Available from: https://chatgpt.com.
Anthropic. Claude [Internet]. Available from: https://claude.ai.
Google. Gemini [Internet]. Available from: https://gemini.google.com.
Langlotz CP. Will artificial intelligence replace radiologists? Radiol Artif Intell Radiological Soc North Am (RSNA). 2019;1(3):e190058.
Market Dynamics. and Investment Trends in the U.S. Technology Space - focus on AI investments.
AComprehensive. Survey of Large Language Models and Multimodal Large Language Models in Medicine.
Hartsock I, Rasool G. Vision-language models for medical report generation and visual question answering: A review [Internet]. arXiv [csCV] 2024. Available from: http://arxiv.org/abs/2403.02469
Liu L, Yang X, Lei J et al. A survey on Medical Large Language Models: Technology, Application, Trustworthiness, and future directions [Internet]. arXiv [csCL] 2024. Available from: http://arxiv.org/abs/2406.03712
Jiang Y, Omiye JA, Zakka C et al. Evaluating General Vision-Language Models for Clinical Medicine [Internet]. Health Informatics medRxiv; 2024. Available from: https://www.medrxiv.org/content/https://doi.org/10.1101/2024.04.12.24305744v2
Jakhar D, Kaur I. Artificial intelligence, machine learning and deep learning: definitions and differences. Clin Exp Dermatol Wiley. 2020;45(1):131–2.
Hughes RT, Zhu L, Bednarz T. Generative adversarial networks-enabled human-artificial intelligence collaborative applications for creative and design industries: A systematic review of current approaches and trends. Front Artif Intell Front Media SA. 2021;4:604234.
Schmidhuber J. Annotated history of modern AI and deep learning [Internet]. arXiv [csNE] 2022. Available from: http://arxiv.org/abs/2212.11279
Taye MM. Theoretical Understanding of convolutional neural network: concepts, architectures, applications, future directions. Comput (Basel) MDPI AG. 2023;11(3):52.
Vaswani A, Shazeer N, Parmar N et al. Attention is all you need. Adv Neural Inf Process Syst [Internet]. 2017;30. Available from: https://proceedings.neurips.cc/paper/7181-attention-is-all
Takahashi S, Sakaguchi Y, Kouno N, et al. Comparison of vision Transformers and convolutional neural networks in medical image analysis: A systematic review. J Med Syst Springer Sci Bus Media LLC. 2024;48(1):84.
Moutik O, Sekkat H, Tigani S, et al. Convolutional neural networks or vision Transformers: who will win the race for action recognitions in visual data? Sensors (Basel). MDPI AG. 2023;23(2):734.
Arsov N, Mirceva G. Network embedding: An overview [Internet]. arXiv [csLG] 2019. Available from: https://doi.org/10.48550/arXiv.1911.11726
Wang Y, Yao Y, Tong H, Xu F, Lu J. A brief review of network embedding. Volume 2. Big Data Min Anal Tsinghua University; 2019. pp. 35–47. 1.
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation [Internet]. arXiv [csCV] 2015. Available from: https://doi.org/10.48550/arXiv.1505.04597
Wang L, Yang N, Huang X, Yang L, Majumder R, Wei F. Improving text embeddings with large language models [Internet]. arXiv [csCL] 2024. Available from: https://doi.org/10.48550/arXiv.2401.00368
Alqahtani H, Kavakli-Thorne M, Kumar G. Applications of generative adversarial networks (GANs): an updated review. Arch Comput Methods Eng Springer Sci Bus Media LLC. 2021;28(2):525–52.
Yu Y, Si X, Hu C, Zhang J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput MIT Press - Journals. 2019;31(7):1235–70.
Croitoru F-A, Hondru V, Ionescu RT, Shah M. Diffusion models in vision: A survey. IEEE Trans Pattern Anal Mach Intell Inst Electr Electron Eng (IEEE). 2023;45(9):10850–69.
Ho J, Jain A, Abbeel P. Denoising Diffusion Probabilistic Models [Internet]. arXiv [csLG] 2020. Available from: http://arxiv.org/abs/2006.11239
Ho J, Salimans T. Classifier-Free Diffusion Guidance [Internet]. arXiv [csLG] 2022. Available from: http://arxiv.org/abs/2207.12598
Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models [Internet]. arXiv [csCV] 2021 [cited 2023 Dec 30]. pp. 10684–10695. Available from: http://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large Language models in medicine. Nat Med. 2023;29(8):1930–40.
Rust P, Pfeiffer J, Vulić I, Ruder S, Gurevych I. How good is your tokenizer? On the monolingual performance of multilingual language models [Internet]. arXiv [csCL] 2020. Available from: https://doi.org/10.48550/arXiv.2012.15613
Wu J, Gan W, Chen Z, Wan S, Yu PS. Multimodal large language models: A survey. 2023 IEEE International Conference on Big Data (BigData) IEEE; 2023. pp. 2247–2256.
Lee K, Ippolito D, Nystrom A et al. Deduplicating training data makes language models better [Internet]. arXiv [csCL] 2021. Available from: https://doi.org/10.48550/arXiv.2107.06499
Faiz A, Kaneda S, Wang R et al. LLMCarbon: Modeling the end-to-end carbon footprint of large language models. arXiv [csCL] [Internet] arXiv; 2023; Available from: https://doi.org/10.48550/arXiv.2309.14393
Zhang S, Dong L, Li X et al. Instruction tuning for large language models: A survey [Internet]. arXiv [csCL] 2023. Available from: https://doi.org/10.48550/arXiv.2308.10792
Wang Z, Bi B, Pentyala SK et al. A Comprehensive Survey of LLM Alignment Techniques: RLHF, RLAIF, PPO, DPO and More [Internet]. arXiv [csCL] 2024. Available from: https://doi.org/10.48550/arXiv.2407.16216
Chen B, Zhang Z, Langrené N, Zhu S. Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review [Internet]. arXiv [csCL] 2023. Available from: https://doi.org/10.48550/arXiv.2310.14735
Parthasarathy VB, Zafar A, Khan A, Shahid A. The ultimate guide to fine-tuning LLMs from basics to breakthroughs: An exhaustive review of technologies, research, best practices, applied research challenges and opportunities [Internet]. arXiv [csLG] 2024. Available from: https://doi.org/10.48550/arXiv.2408.13296
Shi H, Xu Z, Wang H et al. Continual learning of large language models: A comprehensive survey [Internet]. arXiv [csLG] 2024. Available from: https://doi.org/10.48550/arXiv.2404.16789
Dubey A, Jauhri A, Pandey A et al. The Llama 3 herd of models [Internet]. arXiv [csAI] 2024. Available from: https://doi.org/10.48550/arXiv.2407.21783
Liu H, Li C, Wu Q, Lee YJ. Visual Instruction Tuning [Internet]. arXiv [csCV] 2023. Available from: https://doi.org/10.48550/arXiv.2304.08485
Zhang G, Jin Q, Zhou Y, et al. Closing the gap between open source and commercial large Language models for medical evidence summarization. NPJ Digit Med Springer Sci Bus Media LLC. 2024;7(1):239.
Khosravi B, Li F, Dapamede T et al. Synthetically Enhanced: Unveiling Synthetic Data’s Potential in Medical Imaging Research [Internet]. arXiv [csCV] 2023. Available from: http://arxiv.org/abs/2311.09402
CXR-IRGen. An Integrated Vision and Language Model for the Generation of Clinically Accurate Chest X-Ray Image-Report Pairs.
Rouzrokh P, Khosravi B, Faghani S, Moassefi M, Vahdati S, Erickson BJ. Multitask brain tumor inpainting with diffusion models: A methodological report. ArXiv Preprint arXiv:221012113 2022.
Khosravi B, Rouzrokh P, Erickson BJ, et al. Analyzing Racial differences in imaging joint replacement registries using generative artificial intelligence: advancing orthopaedic data equity. Arthroplast Today Elsevier BV. 2024;29(101503):101503.
Liu T, Han S, Xie L, et al. Super-resolution reconstruction of ultrasound image using a modified diffusion model. Phys Med Biol IOP Publishing. 2024;69(12):125026.
Xu X, Kapse S, Prasanna P. Histo-diffusion: A diffusion super-resolution method for digital pathology with comprehensive quality assessment [Internet]. arXiv [eessIV] 2024. Available from: http://arxiv.org/abs/2408.15218
Li G, Rao C, Mo J, Zhang Z, Xing W, Zhao L. Rethinking diffusion model for multi-contrast MRI super-resolution [Internet]. arXiv [csCV] 2024. Available from: http://arxiv.org/abs/2404.04785
Lyu Q, Wang G. Conversion between CT and MRI images using diffusion and score-matching models [Internet]. arXiv [eessIV] 2022. Available from: http://arxiv.org/abs/2209.12104
Rouzrokh P, Khosravi B, Faghani S et al. RadRotator: 3D Rotation of Radiographs with Diffusion Models [Internet]. arXiv [eessIV] 2024. Available from: http://arxiv.org/abs/2404.13000
Wolleb J, Bieder F, Sandkühler R, Cattin PC. Diffusion Models for Medical Anomaly Detection [Internet]. arXiv [eessIV] 2022. Available from: http://arxiv.org/abs/2203.04306
Amit T, Shaharbany T, Nachmani E, Wolf L, SegDiff. Image segmentation with diffusion probabilistic models [Internet]. arXiv [csCV] 2021. Available from: http://arxiv.org/abs/2112.00390
Han J, Park J, Huh J, Oh U, Do J, Kim D, AscleAI:. A LLM-based clinical note management system for enhancing clinician productivity. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems New York, NY, USA: ACM; 2024. pp. 1–7.
Jung H, Kim Y, Choi H et al. Enhancing clinical efficiency through LLM: Discharge note generation for cardiac patients [Internet]. arXiv [csCL] 2024. Available from: http://arxiv.org/abs/2404.05144
Yuan D, Rastogi E, Naik G et al. A continued pretrained LLM approach for automatic medical note generation [Internet]. arXiv [csCL] 2024. Available from: http://arxiv.org/abs/2403.09057
Chen Z, Luo L, Bie Y, Chen H, Dia-LLaMA. Towards large language model-driven CT report generation [Internet]. arXiv [csCV] 2024. Available from: http://arxiv.org/abs/2403.16386
Zhang L, Liu M, Wang L, et al. Constructing a large Language model to generate impressions from findings in radiology reports. Radiol Radiological Soc North Am (RSNA). 2024;312(3):e240885.
Vaccaro M, Almaatouq A, Malone T. When combinations of humans and AI are useful: A systematic review and meta-analysis. Nat Hum Behav. 2024;8(12):2293–303.
PubMed PubMed Central Google Scholar
Mohammadi FG, Sebro R. Artificial intelligence impact on burnout in radiologists-alleviation or exacerbation? JAMA Netw Open Am Med Association (AMA). 2024;7(11):e2448720.
Liu H, Ding N, Li X, et al. Artificial intelligence and radiologist burnout. JAMA Netw Open. 2024;7(11):e2448714.
PubMed PubMed Central Google Scholar
Chisholm M, Magudia K. Beyond the AJR: Reevaluating the impact of artificial intelligence on radiologist burnout. AJR Am J Roentgenol [Internet]. 2025; Available from: https://doi.org/10.2214/AJR.25.32713
Chen S, Guevara M, Moningi S, et al. The effect of using a large Language model to respond to patient messages. Lancet Digit Health Elsevier BV. 2024;6(6):e379–81.
Wang S, Liu T, Kinoshita S, Yokoyama HM. LLMs may improve medical communication: social science perspective. Postgrad Med J [Internet] Oxford University Press (OUP); 2024; Available from: https://doi.org/10.1093/postmj/qgae101
Lucas HC, Upperman JS, Robinson JR. A systematic review of large Language models and their implications in medical education. Med Educ Wiley. 2024;58(11):1276–85.
Zhu Y, Tang W, Sun Y, Yang X. The potential of LLMs in medical education: Generating questions and answers for qualification exams [Internet]. arXiv [csCL] 2024. Available from: http://arxiv.org/abs/2410.23769
AlSaad R, Abd-Alrazaq A, Boughorbel S, et al. Multimodal large Language models in health care: applications, challenges, and future outlook. J Med Internet Res J Med Internet Res. 2024;26(1):e59505.
Jia S, Bit S, Searls E et al. MedPodGPT: A multilingual audio-augmented large language model for medical research and education. medRxiv [Internet]. 2024; Available from: https://doi.org/10.1101/2024.07.11.24310304
Zhang Y, Xia T, Saeed A, Mascolo C. RespLLM: Unifying audio and text with multimodal LLMs for generalized respiratory health prediction [Internet]. arXiv [csLG] 2024. Available from: http://arxiv.org/abs/2410.05361
Ozawa T, Hayashi Y, Oda H, et al. Synthetic laparoscopic video generation for machine learning-based surgical instrument segmentation from real laparoscopic video and virtual surgical instruments. Comput Methods Biomech Biomed Eng Imaging Vis Informa UK Ltd. 2021;9(3):225–32.
Seibold M, Hoch A, Farshad M, Navab N, Fürnstahl P. Conditional generative data augmentation for clinical audio datasets [Internet]. arXiv [csSD] 2022. Available from: http://arxiv.org/abs/2203.11570
Iliash I, Allmendinger S, Meissen F, Kühl N, Rückert D. Interactive generation of laparoscopic videos with diffusion models. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland; 2025. pp. 109–18.
Cho J, Schmidgall S, Zakka C et al. SurGen: Text-guided diffusion model for surgical video generation [Internet]. arXiv [csCV] 2024. Available from: http://arxiv.org/abs/2408.14028
Li C, Liu H, Liu Y et al. Endora: Video generation models as endoscopy simulators [Internet]. arXiv [csCV] 2024. Available from: http://arxiv.org/abs/2403.11050
Chu SN, Goodell AJ. Synthetic patients: Simulating difficult conversations with multimodal generative AI for medical education [Internet]. arXiv [csHC] 2024. Available from: http://arxiv.org/abs/2405.19941
Preiksaitis C, Rose C. Opportunities, challenges, and future directions of generative artificial intelligence in medical education: scoping review. Volume 9. JMIR Med Educ JMIR Publications Inc.; 2023. p. e48785. 1.
Martikainen M. Estimating generative AI impacts in public social and health care language translation services [Internet]. 2024 [cited 2024 Nov 10]. Available from: https://urn.fi/URN:NBN:fi-fe2024091070021
Mayol J. Transforming abdominal wall surgery with generative artificial intelligence. J Abdom Wall Surg. 2023;2:12419.
PubMed PubMed Central Google Scholar
Mohamed AA, Lucke-Wold B. Text-to-video generative artificial intelligence: Sora in neurosurgery. Neurosurg Rev Springer Sci Bus Media LLC. 2024;47(1):272.
Zhang C, Hallbeck MS, Salehinejad H, Thiels C. The integration of artificial intelligence in robotic surgery: A narrative review. Surg Elsevier BV. 2024;176(3):552–7.
Liu R, Bai Y, Yue X, Zhang P. Teach Multimodal LLMs to Comprehend Electrocardiographic Images [Internet]. arXiv [eessIV] 2024. Available from: http://arxiv.org/abs/2410.19008
Jin Y, Zhang Y, OrthoDoc. Multimodal large language model for assisting diagnosis in computed Tomography [Internet]. arXiv [eessIV] 2024. Available from: http://arxiv.org/abs/2409.09052
Dai L, Lei J, Ma F, et al. Boosting deep learning for interpretable brain MRI lesion detection through the integration of radiology report information. Radiol Artif Intell. 2024;6(6):e230520.
PubMed PubMed Central Google Scholar
Renc P, Jia Y, Samir AE, et al. Zero shot health trajectory prediction using transformer. NPJ Digit Med. 2024;7(1):256.
PubMed PubMed Central Google Scholar
Fraga N. Challenging LLMs beyond information retrieval: Reasoning degradation with long context windows [Internet]. Preprints. 2024. Available from: https://doi.org/10.20944/preprints202408.1527.v1
Amugongo LM, Mascheroni P, Brooks SG, Doering S, Seidel J. Retrieval augmented generation for large Language Models in healthcare: A systematic review [Internet]. Preprints 2024. Available from: https://doi.org/10.20944/preprints202407.0876.v1
Zakka C, Shad R, Chaurasia A et al. Almanac - retrieval-augmented language models for clinical medicine. NEJM AI [Internet] Massachusetts Medical Society; 2024;1(2). Available from: https://doi.org/10.105
Comments (0)