Bhavyaa R, Muthu MS, Nirmal L, Patil SS. Crown dimensions of primary teeth-A systematic review and meta-analysis. J Forensic Sci. 2022;67(4):1348–56. https://doi.org/10.1111/1556-4029.15015.
Caleya AM, Gallardo NE, Feijoo G, Mourelle-Martínez MR, Martín-Vacas A, Maroto M. Relationship between physiological resorption of primary molars with its permanent successors, dental age and chronological age. Children (Basel). 2022;9(7):941. https://doi.org/10.3390/children9070941.
Eşian D, Bica CI, Stoica OE, Dako T, Vlasa A, Bud ES, et al. Prevalence and Manifestations of Dental Ankylosis in Primary Molars Using Panoramic X-rays: A Cross-Sectional Study. Children (Basel). 2022;9(8):1188. https://doi.org/10.3390/children9081188.
Fulton AJ, Liversidge HM. A radiographic study of estimating age by deciduous mandibular canine and molar root resorption. Ann Anat. 2016;203:33–7. https://doi.org/10.1016/j.aanat.2015.02.010.
Garcete Delvalle CS, De Nova García MJ, Mourelle Martínez MR. Root resorption of primary molars and dental development of premolars in children with Osteogenesis Imperfecta medicated with bisphosphonates, grouped according to age and gender. BMC Oral Health. 2024;24(1):857. https://doi.org/10.1186/s12903-024-04557-3.
Article PubMed PubMed Central Google Scholar
Garcete Delvalle CS, De Nova García MJ, Mourelle Martínez MR. Eruptive Process in Children with Osteogenesis Imperfecta. Calcif Tissue Int. 2025;116(1):37. https://doi.org/10.1007/s00223-025-01345-1.
Article CAS PubMed Google Scholar
Gomez RS, Silva EC, Silva-Filho EC, Castro WH. Multiple calcifying hyperplastic dental follicles. J Oral Pathol Med. 1998;27(7):333–4. https://doi.org/10.1111/j.1600-0714.1998.tb01965.x.
Article CAS PubMed Google Scholar
Haavikko K. Correlation between the root resorption of deciduous teeth and the formation of the corresponding permanent teeth. Proc Finn Dent Soc. 1973a;69(5):191–201.
Haavikko K. The physiological resorption of the roots of deciduous teeth in Helsinki children. Proc Finn Dent Soc. 1973b;69(3):93–8.
Haavikko K, Mattila K. The reliability of orthopantomograms in determining the stage of resorption of deciduous teeth. Proc Finn Dent Soc. 1973;69(3):88–92.
Haralabakis NB, Yiagtzis SC, Toutountzakis NM. Premature or delayed exfoliation of deciduous teeth and root resorption and formation. Angle Orthod. 1994;64(2):151–7. https://doi.org/10.1043/0003-3219(1994)064%3c0151:podeod%3e2.0.co;2.
Article CAS PubMed Google Scholar
Harokopakis-Hajishengallis E. Physiologic root resorption in primary teeth: molecular and histological events. J Oral Sci. 2007;49(1):1–12. https://doi.org/10.2334/josnusd.49.1.
Article CAS PubMed Google Scholar
Ishikura Y. A study of root resorption of deciduous teeth in dogs. Influence of successional tooth germ and occlusal force. Shoni Shikagaku Zasshi. 1991;29(1):102–29.
Kim Y-K, Park J-Y, Kim S-G, Kim J-S, Kim J-D. Magnification rate of digital panoramic radiographs and its effectiveness for pre-operative assessment of dental implants. Dentomaxillofac Radiol. 2011;40(2):76–83. https://doi.org/10.1259/dmfr/20544408.
Article PubMed PubMed Central Google Scholar
Lin B-C, Zhao Y-M, Yang J, Ge L-H. Root resorption of primary molars without successor teeth. An experimental study in the beagle dog. Eur J Oral Sci. 2012;120(2):147–52. https://doi.org/10.1111/j.1600-0722.2012.00950.x.
Article CAS PubMed Google Scholar
Marks SC, Cahill DR. Experimental study in the dog of the non-active role of the tooth in the eruptive process. Arch Oral Biol. 1984;29(4):311–22. https://doi.org/10.1016/0003-9969(84)90105-5.
Marks SC, Gorski JP, Wise GE. The mechanisms and mediators of tooth eruption–models for developmental biologists. Int J Dev Biol. 1995;39(1):223–30.
Moorrees CF, Fanning EA, Hunt EE. Formation and resorption of three deciduous teeth in children. Am J Phys Anthropol. 1963;21(2):205–13. https://doi.org/10.1002/ajpa.1330210212.
Article CAS PubMed Google Scholar
Peretz B, Nisan S, Herteanu L, Blumer S. Root resorption patterns of primary mandibular molars and location of the premolar successors: a radiographic evaluation. Pediatr Dent. 2013;35(5):426–9.
Philipp RG, Hurst RV. The cant of the occlusal plane and distortion in the panoramic radiograph. Angle Orthod. 1978;48(4):317–23. https://doi.org/10.1043/0003-3219(1978)048%3c3C0317:tcotop%3e2.0.co;2.
Article CAS PubMed Google Scholar
Prove SA, Symons AL, Meyers IA. Physiological root resorption of primary molars. J Clin Pediatr Dent. 1992;16(3):202–6.
Sandler HJ, Nersasian RR, Cataldo E, Pochebit S, Dayal Y. Multiple dental follicles with odontogenic fibroma-like changes (WHO type). Oral Surg Oral Med Oral Pathol. 1988;66(1):78–84. https://doi.org/10.1016/0030-4220(88)90072-2.
Article CAS PubMed Google Scholar
Savoldi F, Dalessandri D, Gardoni A, Dianiskova S, Bonetti S, Visconti L. Treatment of ankylosed deciduous molars with or without permanent successors in children and adolescents: a systematic review. Minerva Dent Oral Sci. 2021;70(6):276–85. https://doi.org/10.23736/s2724-6329.21.04478-8.
Vuorimies I, Arponen H, Valta H, Tiesalo O, Ekholm M, Ranta H, et al. Timing of dental development in osteogenesis imperfecta patients with and without bisphosphonate treatment. Bone. 2017;94:29–33. https://doi.org/10.1016/j.bone.2016.10.004.
Article CAS PubMed Google Scholar
Wise G. Cellular and molecular basis of tooth eruption. Orthod Craniofac Res. 2009;12(2):67–73. https://doi.org/10.1111/j.1601-6343.2009.01439.x.
Article CAS PubMed PubMed Central Google Scholar
Zeng L, He H, Sun M, Gong X, Zhou M, Hong Y, et al. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther. 2022;13(1):486. https://doi.org/10.1186/s13287-022-03140-3.
Comments (0)