Root resorption pattern and root length of mandibular primary molars in children: a cross-sectional radiographic study

Bhavyaa R, Muthu MS, Nirmal L, Patil SS. Crown dimensions of primary teeth-A systematic review and meta-analysis. J Forensic Sci. 2022;67(4):1348–56. https://doi.org/10.1111/1556-4029.15015.

Article  PubMed  Google Scholar 

Caleya AM, Gallardo NE, Feijoo G, Mourelle-Martínez MR, Martín-Vacas A, Maroto M. Relationship between physiological resorption of primary molars with its permanent successors, dental age and chronological age. Children (Basel). 2022;9(7):941. https://doi.org/10.3390/children9070941.

Article  PubMed  Google Scholar 

Eşian D, Bica CI, Stoica OE, Dako T, Vlasa A, Bud ES, et al. Prevalence and Manifestations of Dental Ankylosis in Primary Molars Using Panoramic X-rays: A Cross-Sectional Study. Children (Basel). 2022;9(8):1188. https://doi.org/10.3390/children9081188.

Article  PubMed  Google Scholar 

Fulton AJ, Liversidge HM. A radiographic study of estimating age by deciduous mandibular canine and molar root resorption. Ann Anat. 2016;203:33–7. https://doi.org/10.1016/j.aanat.2015.02.010.

Article  PubMed  Google Scholar 

Garcete Delvalle CS, De Nova García MJ, Mourelle Martínez MR. Root resorption of primary molars and dental development of premolars in children with Osteogenesis Imperfecta medicated with bisphosphonates, grouped according to age and gender. BMC Oral Health. 2024;24(1):857. https://doi.org/10.1186/s12903-024-04557-3.

Article  PubMed  PubMed Central  Google Scholar 

Garcete Delvalle CS, De Nova García MJ, Mourelle Martínez MR. Eruptive Process in Children with Osteogenesis Imperfecta. Calcif Tissue Int. 2025;116(1):37. https://doi.org/10.1007/s00223-025-01345-1.

Article  CAS  PubMed  Google Scholar 

Gomez RS, Silva EC, Silva-Filho EC, Castro WH. Multiple calcifying hyperplastic dental follicles. J Oral Pathol Med. 1998;27(7):333–4. https://doi.org/10.1111/j.1600-0714.1998.tb01965.x.

Article  CAS  PubMed  Google Scholar 

Haavikko K. Correlation between the root resorption of deciduous teeth and the formation of the corresponding permanent teeth. Proc Finn Dent Soc. 1973a;69(5):191–201.

CAS  PubMed  Google Scholar 

Haavikko K. The physiological resorption of the roots of deciduous teeth in Helsinki children. Proc Finn Dent Soc. 1973b;69(3):93–8.

CAS  PubMed  Google Scholar 

Haavikko K, Mattila K. The reliability of orthopantomograms in determining the stage of resorption of deciduous teeth. Proc Finn Dent Soc. 1973;69(3):88–92.

CAS  PubMed  Google Scholar 

Haralabakis NB, Yiagtzis SC, Toutountzakis NM. Premature or delayed exfoliation of deciduous teeth and root resorption and formation. Angle Orthod. 1994;64(2):151–7. https://doi.org/10.1043/0003-3219(1994)064%3c0151:podeod%3e2.0.co;2.

Article  CAS  PubMed  Google Scholar 

Harokopakis-Hajishengallis E. Physiologic root resorption in primary teeth: molecular and histological events. J Oral Sci. 2007;49(1):1–12. https://doi.org/10.2334/josnusd.49.1.

Article  CAS  PubMed  Google Scholar 

Ishikura Y. A study of root resorption of deciduous teeth in dogs. Influence of successional tooth germ and occlusal force. Shoni Shikagaku Zasshi. 1991;29(1):102–29.

CAS  PubMed  Google Scholar 

Kim Y-K, Park J-Y, Kim S-G, Kim J-S, Kim J-D. Magnification rate of digital panoramic radiographs and its effectiveness for pre-operative assessment of dental implants. Dentomaxillofac Radiol. 2011;40(2):76–83. https://doi.org/10.1259/dmfr/20544408.

Article  PubMed  PubMed Central  Google Scholar 

Lin B-C, Zhao Y-M, Yang J, Ge L-H. Root resorption of primary molars without successor teeth. An experimental study in the beagle dog. Eur J Oral Sci. 2012;120(2):147–52. https://doi.org/10.1111/j.1600-0722.2012.00950.x.

Article  CAS  PubMed  Google Scholar 

Marks SC, Cahill DR. Experimental study in the dog of the non-active role of the tooth in the eruptive process. Arch Oral Biol. 1984;29(4):311–22. https://doi.org/10.1016/0003-9969(84)90105-5.

Article  PubMed  Google Scholar 

Marks SC, Gorski JP, Wise GE. The mechanisms and mediators of tooth eruption–models for developmental biologists. Int J Dev Biol. 1995;39(1):223–30.

PubMed  Google Scholar 

Moorrees CF, Fanning EA, Hunt EE. Formation and resorption of three deciduous teeth in children. Am J Phys Anthropol. 1963;21(2):205–13. https://doi.org/10.1002/ajpa.1330210212.

Article  CAS  PubMed  Google Scholar 

Peretz B, Nisan S, Herteanu L, Blumer S. Root resorption patterns of primary mandibular molars and location of the premolar successors: a radiographic evaluation. Pediatr Dent. 2013;35(5):426–9.

PubMed  Google Scholar 

Philipp RG, Hurst RV. The cant of the occlusal plane and distortion in the panoramic radiograph. Angle Orthod. 1978;48(4):317–23. https://doi.org/10.1043/0003-3219(1978)048%3c3C0317:tcotop%3e2.0.co;2.

Article  CAS  PubMed  Google Scholar 

Prove SA, Symons AL, Meyers IA. Physiological root resorption of primary molars. J Clin Pediatr Dent. 1992;16(3):202–6.

CAS  PubMed  Google Scholar 

Sandler HJ, Nersasian RR, Cataldo E, Pochebit S, Dayal Y. Multiple dental follicles with odontogenic fibroma-like changes (WHO type). Oral Surg Oral Med Oral Pathol. 1988;66(1):78–84. https://doi.org/10.1016/0030-4220(88)90072-2.

Article  CAS  PubMed  Google Scholar 

Savoldi F, Dalessandri D, Gardoni A, Dianiskova S, Bonetti S, Visconti L. Treatment of ankylosed deciduous molars with or without permanent successors in children and adolescents: a systematic review. Minerva Dent Oral Sci. 2021;70(6):276–85. https://doi.org/10.23736/s2724-6329.21.04478-8.

Article  PubMed  Google Scholar 

Vuorimies I, Arponen H, Valta H, Tiesalo O, Ekholm M, Ranta H, et al. Timing of dental development in osteogenesis imperfecta patients with and without bisphosphonate treatment. Bone. 2017;94:29–33. https://doi.org/10.1016/j.bone.2016.10.004.

Article  CAS  PubMed  Google Scholar 

Wise G. Cellular and molecular basis of tooth eruption. Orthod Craniofac Res. 2009;12(2):67–73. https://doi.org/10.1111/j.1601-6343.2009.01439.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng L, He H, Sun M, Gong X, Zhou M, Hong Y, et al. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther. 2022;13(1):486. https://doi.org/10.1186/s13287-022-03140-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif