Gurevich EV, Gurevich VV. Therapeutic potential of small molecules and engineered proteins. Handb Exp Pharmacol. 2014;219:1–12.
Article CAS PubMed PubMed Central Google Scholar
Tushir-Singh J. Antibody-siRNA conjugates: drugging the undruggable for anti-leukemic therapy. Expert Opin Biol Th. 2017;17(3):325–38.
Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med. 2015;7.
Walsh G, Walsh E. Biopharmaceutical benchmarks 2022. Nat Biotechnol. 2022;40(12):1722–60.
Article CAS PubMed PubMed Central Google Scholar
Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer. 2010;9.
Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94.
Article CAS PubMed PubMed Central Google Scholar
Dammes N, Peer D. Paving the road for RNA therapeutics. Trends Pharmacol Sci. 2020;41(10):755–75.
Article CAS PubMed PubMed Central Google Scholar
Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, et al. The current landscape of nucleic acid therapeutics (vol 16, pg 630, 2021). Nat Nanotechnol. 2021;16(7):841.
Article CAS PubMed Google Scholar
Kim J, Hu C, El Achkar CM, Black LE, Douville J, Larson A, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. New Engl J Med. 2019;381(17):1644–52.
Article CAS PubMed Google Scholar
Hermann T, Patel DJ. Biochemistry - Adaptive recognition by nucleic acid aptamers. Science. 2000;287(5454):820–5.
Article CAS PubMed Google Scholar
Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361(6405):866–9.
Article CAS PubMed PubMed Central Google Scholar
Wolf DP, Mitalipov PA, Mitalipov SM. Principles of and strategies for germline gene therapy. Nat Med. 2019;25(6):890–7.
Article CAS PubMed Google Scholar
Weng YH, Xiao HH, Zhang JC, Liang XJ, Huang YY. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37(5):801–25.
Article CAS PubMed Google Scholar
Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov. 2020;19(7):441–2.
Article CAS PubMed Google Scholar
Li HY, Yang Y, Hong WQ, Huang MY, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Tar. 2020;5(1).
ASGCT. Gene, cell, & RNA therapy landscape report Q3 2024. 2024. https://www.asgct.org/publications/landscape-report. Accessed 28 Dec 2024.
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, et al. Exploring precision treatments in immune-mediated inflammatory diseases: harnessing the infinite potential of nucleic acid delivery. Explor. n/a (n/a):20230165.
Keeler CE. Gene therapy. J Hered. 1947;38(10):294–8.
FDA. Vitravene (fomivirsen sodium intravitreal injectable) injection. 2002. https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/20961_Vitravene.cfm. Accessed 5 Oct 2024.
Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. PNAS. 1978;75(1):285–8.
Article CAS PubMed PubMed Central Google Scholar
Egli M, Manoharan M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 2023;51(6):2529–73.
Article CAS PubMed PubMed Central Google Scholar
Wathion N. Public statement on Vitravene (fomivirsen): withdrawal of the marketing authorisation in the European Union. 2002. https://www.ema.europa.eu/en/medicines/human/EPAR/vitravene. Accessed 25 Sep 2024.
Wang W, Sun Q. Novel targeted drugs approved by the NMPA and FDA in 2019. Signal Transduct Tar. 2020;5(1):65.
Scott LJ. Givosiran: first approval. Drugs. 2020;80(3):335–9.
Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Dehshahri A, Vazin A. A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. Int Immunopharmacol. 2021;100: 108162.
Article CAS PubMed PubMed Central Google Scholar
Ranjbar S, Emamjomeh A, Sharifi F, Zarepour A, Aghaabbasi K, Dehshahri A, et al. Lipid-based delivery systems for flavonoids and flavonolignans: liposomes, nanoemulsions, and solid lipid nanoparticles. Pharmaceutics. 2023;15(7).
Meyerhoff A. US Food and Drug Administration approval of Am Bisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis. 1999;28(1):42–8.
Article CAS PubMed Google Scholar
Stone NR, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500.
Article CAS PubMed PubMed Central Google Scholar
FDA approves DaunoXome as first-line therapy for Kaposi’s sarcoma. Food and Drug Administration. J Int Assoc Physicians AIDS Care. 1996;2(5):50-1.
Lao J, Madani J, Puértolas T, Álvarez M, Hernández A, Pazo-Cid R, et al. Liposomal doxorubicin in the treatment of breast cancer patients: a review. J Drug Deliv. 2013;2013(1): 456409.
PubMed PubMed Central Google Scholar
Barenholz YC. Doxil®—The first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.
Article CAS PubMed Google Scholar
FDA. FDA approves first treatment for certain types of poor-prognosis acute myeloid leukemia. 2018. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-certain-types-poor-prognosis-acute-myeloid-leukemia. Accessed 20 Sep 2024.
Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14(12):1084–7.
Article CAS PubMed Google Scholar
Cullis P, Mayer L, Bally M, Madden T, Hope M. Generating and loading of liposomal systems for drug-delivery applications. Adv Drug Deliv Rev. 1989;3(3):267–82.
Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol Pharm. 2022;19(6):1669–86.
Article CAS PubMed PubMed Central Google Scholar
Hafez I, Maurer N, Cullis P. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 2001;8(15):1188–96.
Article CAS PubMed Google Scholar
Chatterjee S, Kon E, Sharma P, Peer D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc Natl Acad Sci U S A. 2024;121(11): e2307800120.
Article CAS PubMed PubMed Central Google Scholar
Tang X, Zhang Y, Han X. Ionizable lipid nanoparticles for mRNA delivery. Adv Nanobiomed Res. 2023;3(8):2300006.
Albertsen CH, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188.
Mrksich K, Padilla MS, Joseph RA, Han EL, Kim D, Palanki R, et al. Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length. J Biomed Mater Res A. 2024;112(9):1494–505.
Article CAS PubMed Google Scholar
Mui BL, Tam YK, Jayaraman M, Ansell SM, Du X, Tam YY, et al. Influence of
Comments (0)