The Fomivirsen, Patisiran, and Givosiran Odyssey: How the Success Stories May Pave the Way for Future Clinical Translation of Nucleic Acid Drugs

Gurevich EV, Gurevich VV. Therapeutic potential of small molecules and engineered proteins. Handb Exp Pharmacol. 2014;219:1–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tushir-Singh J. Antibody-siRNA conjugates: drugging the undruggable for anti-leukemic therapy. Expert Opin Biol Th. 2017;17(3):325–38.

Article  CAS  Google Scholar 

Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med. 2015;7.

Walsh G, Walsh E. Biopharmaceutical benchmarks 2022. Nat Biotechnol. 2022;40(12):1722–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer. 2010;9.

Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dammes N, Peer D. Paving the road for RNA therapeutics. Trends Pharmacol Sci. 2020;41(10):755–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, et al. The current landscape of nucleic acid therapeutics (vol 16, pg 630, 2021). Nat Nanotechnol. 2021;16(7):841.

Article  CAS  PubMed  Google Scholar 

Kim J, Hu C, El Achkar CM, Black LE, Douville J, Larson A, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. New Engl J Med. 2019;381(17):1644–52.

Article  CAS  PubMed  Google Scholar 

Hermann T, Patel DJ. Biochemistry - Adaptive recognition by nucleic acid aptamers. Science. 2000;287(5454):820–5.

Article  CAS  PubMed  Google Scholar 

Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361(6405):866–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolf DP, Mitalipov PA, Mitalipov SM. Principles of and strategies for germline gene therapy. Nat Med. 2019;25(6):890–7.

Article  CAS  PubMed  Google Scholar 

Weng YH, Xiao HH, Zhang JC, Liang XJ, Huang YY. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37(5):801–25.

Article  CAS  PubMed  Google Scholar 

Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov. 2020;19(7):441–2.

Article  CAS  PubMed  Google Scholar 

Li HY, Yang Y, Hong WQ, Huang MY, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Tar. 2020;5(1).

ASGCT. Gene, cell, & RNA therapy landscape report Q3 2024. 2024. https://www.asgct.org/publications/landscape-report. Accessed 28 Dec 2024.

Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, et al. Exploring precision treatments in immune-mediated inflammatory diseases: harnessing the infinite potential of nucleic acid delivery. Explor. n/a (n/a):20230165.

Keeler CE. Gene therapy. J Hered. 1947;38(10):294–8.

CAS  PubMed  Google Scholar 

FDA. Vitravene (fomivirsen sodium intravitreal injectable) injection. 2002. https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/20961_Vitravene.cfm. Accessed 5 Oct 2024.

Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. PNAS. 1978;75(1):285–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Egli M, Manoharan M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 2023;51(6):2529–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wathion N. Public statement on Vitravene (fomivirsen): withdrawal of the marketing authorisation in the European Union. 2002. https://www.ema.europa.eu/en/medicines/human/EPAR/vitravene. Accessed 25 Sep 2024.

Wang W, Sun Q. Novel targeted drugs approved by the NMPA and FDA in 2019. Signal Transduct Tar. 2020;5(1):65.

Article  Google Scholar 

Scott LJ. Givosiran: first approval. Drugs. 2020;80(3):335–9.

Article  PubMed  Google Scholar 

Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Dehshahri A, Vazin A. A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. Int Immunopharmacol. 2021;100: 108162.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ranjbar S, Emamjomeh A, Sharifi F, Zarepour A, Aghaabbasi K, Dehshahri A, et al. Lipid-based delivery systems for flavonoids and flavonolignans: liposomes, nanoemulsions, and solid lipid nanoparticles. Pharmaceutics. 2023;15(7).

Meyerhoff A. US Food and Drug Administration approval of Am Bisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis. 1999;28(1):42–8.

Article  CAS  PubMed  Google Scholar 

Stone NR, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

FDA approves DaunoXome as first-line therapy for Kaposi’s sarcoma. Food and Drug Administration. J Int Assoc Physicians AIDS Care. 1996;2(5):50-1.

Lao J, Madani J, Puértolas T, Álvarez M, Hernández A, Pazo-Cid R, et al. Liposomal doxorubicin in the treatment of breast cancer patients: a review. J Drug Deliv. 2013;2013(1): 456409.

PubMed  PubMed Central  Google Scholar 

Barenholz YC. Doxil®—The first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.

Article  CAS  PubMed  Google Scholar 

FDA. FDA approves first treatment for certain types of poor-prognosis acute myeloid leukemia. 2018. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-certain-types-poor-prognosis-acute-myeloid-leukemia. Accessed 20 Sep 2024.

Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14(12):1084–7.

Article  CAS  PubMed  Google Scholar 

Cullis P, Mayer L, Bally M, Madden T, Hope M. Generating and loading of liposomal systems for drug-delivery applications. Adv Drug Deliv Rev. 1989;3(3):267–82.

Article  CAS  Google Scholar 

Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol Pharm. 2022;19(6):1669–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hafez I, Maurer N, Cullis P. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 2001;8(15):1188–96.

Article  CAS  PubMed  Google Scholar 

Chatterjee S, Kon E, Sharma P, Peer D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc Natl Acad Sci U S A. 2024;121(11): e2307800120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang X, Zhang Y, Han X. Ionizable lipid nanoparticles for mRNA delivery. Adv Nanobiomed Res. 2023;3(8):2300006.

Article  CAS  Google Scholar 

Albertsen CH, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188.

Mrksich K, Padilla MS, Joseph RA, Han EL, Kim D, Palanki R, et al. Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length. J Biomed Mater Res A. 2024;112(9):1494–505.

Article  CAS  PubMed  Google Scholar 

Mui BL, Tam YK, Jayaraman M, Ansell SM, Du X, Tam YY, et al. Influence of

Comments (0)

No login
gif