Secomb TW, Pries AR (2011) The microcirculation: physiology at the mesoscale. J Physiol 589(Pt 5):1047–1052
Article CAS PubMed PubMed Central Google Scholar
Pries AR et al (2009) Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput Biol 5(5):e1000394
Article PubMed PubMed Central Google Scholar
Pries AR et al (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10(8):587–593
Article CAS PubMed PubMed Central Google Scholar
Peirce SM, Skalak TC (2003) Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis. Microcirculation 10(1):99–111
LeBlanc AJ et al (2012) Microvascular repair: post-angiogenesis vascular dynamics. Microcirculation 19(8):676–695
Pries AR, Secomb TW (2014) Making microvascular networks work: Angiogenesis, remodeling, and pruning. Physiology (Bethesda) 29(6):446–455
Manning D, Rivera EJ, Santana LF (2024) The life cycle of a capillary: Mechanisms of angiogenesis and rarefaction in microvascular physiology and pathologies. Vascul Pharmacol 156:107393
Article CAS PubMed Google Scholar
Hoying JB, Boswell CA, Williams SK (1996) Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev Biol Anim 32(7):409–419
Article CAS PubMed Google Scholar
Strobel HA, Moss SM, Hoying JB (2024) Isolated fragments of intact microvessels: Tissue vascularization, modeling, and therapeutics. Microcirculation 31(4):e12852
Article CAS PubMed Google Scholar
Nunes SS et al (2011) Vessel arterial-venous plasticity in adult neovascularization. PLoS ONE 6(11):e27332
Article CAS PubMed PubMed Central Google Scholar
Nunes SS et al (2010) Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation 17(7):557–567
PubMed PubMed Central Google Scholar
Krishnan L et al (2008) Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc Res 78(2):324–332
Article CAS PubMed Google Scholar
Krishnan L et al (2007) Interaction of angiogenic microvessels with the extracellular matrix. Am J Physiol Heart Circ Physiol 293(6):H3650–H3658
Article CAS PubMed Google Scholar
Chang CC, Hoying JB (2006) Directed three-dimensional growth of microvascular cells and isolated microvessel fragments. Cell Transplant 15(6):533–540
Carter WB et al (2000) Parathyroid-induced angiogenesis is VEGF-dependent. Surgery 128(3):458–464
Article CAS PubMed Google Scholar
Strobel HA, Gerton T, Hoying JB (2021) Vascularized adipocyte organoid model using isolated human microvessel fragments. Biofabrication. https://doi.org/10.1088/1758-5090/abe187
Moss SM et al (2022) A biofabrication strategy for a custom-shaped, non-synthetic bone graft precursor with a prevascularized tissue shell. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.838415
Article PubMed PubMed Central Google Scholar
Utzinger U et al (2015) Large-scale time series microscopy of neovessel growth during angiogenesis. Angiogenesis 18(3):219–232
Article PubMed PubMed Central Google Scholar
Nunes SS et al (2010) Implanted microvessels progress through distinct neovascularization phenotypes. Microvasc Res 79(1):10–20
Article CAS PubMed Google Scholar
Vandekeere S, Dewerchin M, Carmeliet P (2015) Angiogenesis revisited: An overlooked role of endothelial cell metabolism in vessel sprouting. Microcirculation 22(7):509–517
Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370
Article CAS PubMed Google Scholar
Lewis CE, Harney AS, Pollard JW (2016) The multifaceted role of perivascular macrophages in tumors. Cancer Cell 30(1):18–25
Article CAS PubMed PubMed Central Google Scholar
Diaz-Flores L et al (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7):909–969
Shalkamy MSA et al (2022) Oncological impact of vascular invasion in colon cancer might differ depending on tumor sidedness. J Minim Invasive Surg 25(2):53–62
Article PubMed PubMed Central Google Scholar
Garcia J et al (2020) Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev 86:102017
Article CAS PubMed Google Scholar
Raymundo DP et al (2020) Pharmacological targeting of IRE1 in cancer. Trends Cancer 6(12):1018–1030
Article CAS PubMed Google Scholar
McDaniel JS et al (2014) Characterization and multilineage potential of cells derived from isolated microvascular fragments. J Surg Res 192(1):214–222
Article CAS PubMed Google Scholar
Fazio A et al (2024) Signaling role of pericytes in vascular health and tissue homeostasis. Int J Mol Sci 25(12):6592
Article CAS PubMed PubMed Central Google Scholar
Shah FH, Lee HW (2024) Endothelial and macrophage interactions in the angiogenic niche. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2024.07.005
Strobel HA, Moss SM, Hoying JB (2022) Methods for vascularization and perfusion of tissue organoids. Mamm Genome 33(3):437–450
Dos-Anjos Vilaboa S, Navarro-Palou M, Llull R (2014) Age influence on stromal vascular fraction cell yield obtained from human lipoaspirates. Cytotherapy 16(8):1092–1097
Article CAS PubMed Google Scholar
Alaaeddine N et al (2018) Effect of age and body mass index on the yield of stromal vascular fraction. J Cosmet Dermatol 17(6):1233–1239
Laschke MW et al (2014) Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity. Eur Cell Mater 28:287–298
Article CAS PubMed Google Scholar
Aird AL et al (2015) Adipose-derived stromal vascular fraction cells isolated from old animals exhibit reduced capa
Comments (0)