Isolated human adipose microvessels retain native microvessel structure and recapitulate sprouting angiogenesis

Secomb TW, Pries AR (2011) The microcirculation: physiology at the mesoscale. J Physiol 589(Pt 5):1047–1052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pries AR et al (2009) Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput Biol 5(5):e1000394

Article  PubMed  PubMed Central  Google Scholar 

Pries AR et al (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10(8):587–593

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peirce SM, Skalak TC (2003) Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis. Microcirculation 10(1):99–111

Article  PubMed  Google Scholar 

LeBlanc AJ et al (2012) Microvascular repair: post-angiogenesis vascular dynamics. Microcirculation 19(8):676–695

Article  PubMed  Google Scholar 

Pries AR, Secomb TW (2014) Making microvascular networks work: Angiogenesis, remodeling, and pruning. Physiology (Bethesda) 29(6):446–455

PubMed  Google Scholar 

Manning D, Rivera EJ, Santana LF (2024) The life cycle of a capillary: Mechanisms of angiogenesis and rarefaction in microvascular physiology and pathologies. Vascul Pharmacol 156:107393

Article  CAS  PubMed  Google Scholar 

Hoying JB, Boswell CA, Williams SK (1996) Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev Biol Anim 32(7):409–419

Article  CAS  PubMed  Google Scholar 

Strobel HA, Moss SM, Hoying JB (2024) Isolated fragments of intact microvessels: Tissue vascularization, modeling, and therapeutics. Microcirculation 31(4):e12852

Article  CAS  PubMed  Google Scholar 

Nunes SS et al (2011) Vessel arterial-venous plasticity in adult neovascularization. PLoS ONE 6(11):e27332

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunes SS et al (2010) Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation 17(7):557–567

PubMed  PubMed Central  Google Scholar 

Krishnan L et al (2008) Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc Res 78(2):324–332

Article  CAS  PubMed  Google Scholar 

Krishnan L et al (2007) Interaction of angiogenic microvessels with the extracellular matrix. Am J Physiol Heart Circ Physiol 293(6):H3650–H3658

Article  CAS  PubMed  Google Scholar 

Chang CC, Hoying JB (2006) Directed three-dimensional growth of microvascular cells and isolated microvessel fragments. Cell Transplant 15(6):533–540

Article  PubMed  Google Scholar 

Carter WB et al (2000) Parathyroid-induced angiogenesis is VEGF-dependent. Surgery 128(3):458–464

Article  CAS  PubMed  Google Scholar 

Strobel HA, Gerton T, Hoying JB (2021) Vascularized adipocyte organoid model using isolated human microvessel fragments. Biofabrication. https://doi.org/10.1088/1758-5090/abe187

Article  PubMed  Google Scholar 

Moss SM et al (2022) A biofabrication strategy for a custom-shaped, non-synthetic bone graft precursor with a prevascularized tissue shell. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.838415

Article  PubMed  PubMed Central  Google Scholar 

Utzinger U et al (2015) Large-scale time series microscopy of neovessel growth during angiogenesis. Angiogenesis 18(3):219–232

Article  PubMed  PubMed Central  Google Scholar 

Nunes SS et al (2010) Implanted microvessels progress through distinct neovascularization phenotypes. Microvasc Res 79(1):10–20

Article  CAS  PubMed  Google Scholar 

Vandekeere S, Dewerchin M, Carmeliet P (2015) Angiogenesis revisited: An overlooked role of endothelial cell metabolism in vessel sprouting. Microcirculation 22(7):509–517

Article  PubMed  Google Scholar 

Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370

Article  CAS  PubMed  Google Scholar 

Lewis CE, Harney AS, Pollard JW (2016) The multifaceted role of perivascular macrophages in tumors. Cancer Cell 30(1):18–25

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz-Flores L et al (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7):909–969

CAS  PubMed  Google Scholar 

Shalkamy MSA et al (2022) Oncological impact of vascular invasion in colon cancer might differ depending on tumor sidedness. J Minim Invasive Surg 25(2):53–62

Article  PubMed  PubMed Central  Google Scholar 

Garcia J et al (2020) Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev 86:102017

Article  CAS  PubMed  Google Scholar 

Raymundo DP et al (2020) Pharmacological targeting of IRE1 in cancer. Trends Cancer 6(12):1018–1030

Article  CAS  PubMed  Google Scholar 

McDaniel JS et al (2014) Characterization and multilineage potential of cells derived from isolated microvascular fragments. J Surg Res 192(1):214–222

Article  CAS  PubMed  Google Scholar 

Fazio A et al (2024) Signaling role of pericytes in vascular health and tissue homeostasis. Int J Mol Sci 25(12):6592

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah FH, Lee HW (2024) Endothelial and macrophage interactions in the angiogenic niche. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2024.07.005

Article  PubMed  Google Scholar 

Strobel HA, Moss SM, Hoying JB (2022) Methods for vascularization and perfusion of tissue organoids. Mamm Genome 33(3):437–450

Article  PubMed  Google Scholar 

Dos-Anjos Vilaboa S, Navarro-Palou M, Llull R (2014) Age influence on stromal vascular fraction cell yield obtained from human lipoaspirates. Cytotherapy 16(8):1092–1097

Article  CAS  PubMed  Google Scholar 

Alaaeddine N et al (2018) Effect of age and body mass index on the yield of stromal vascular fraction. J Cosmet Dermatol 17(6):1233–1239

Article  PubMed  Google Scholar 

Laschke MW et al (2014) Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity. Eur Cell Mater 28:287–298

Article  CAS  PubMed  Google Scholar 

Aird AL et al (2015) Adipose-derived stromal vascular fraction cells isolated from old animals exhibit reduced capa

Comments (0)

No login
gif