Endothelial USP11 drives VEGFR2 signaling and angiogenesis via PRDX2/c-MYC axis

Augustin HG, Koh GY (2024) A systems view of the vascular endothelium in health and disease. Cell 187(18):4833–4858. https://doi.org/10.1016/j.cell.2024.07.012

Article  CAS  PubMed  Google Scholar 

Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. https://doi.org/10.1038/nature10144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660. https://doi.org/10.1038/nm0603-653

Article  CAS  PubMed  Google Scholar 

Patel KR, Vajaria BN, Begum R, Patel JB, Shah FD, Joshi GM et al (2015) VEGFA isoforms play a vital role in oral cancer progression. Tumour Biol 36(8):6321–6332. https://doi.org/10.1007/s13277-015-3318-1

Article  CAS  PubMed  Google Scholar 

Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE et al (2018) Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci. https://doi.org/10.3390/ijms19041264

Article  PubMed  PubMed Central  Google Scholar 

Wazan LE, Widhibrata A, Liu GS (2024) Soluble FLT-1 in angiogenesis: pathophysiological roles and therapeutic implications. Angiogenesis 27(4):641–661. https://doi.org/10.1007/s10456-024-09942-8

Article  CAS  PubMed  Google Scholar 

Uemura A, Fruttiger M, D’Amore PA, De Falco S, Joussen AM, Sennlaub F et al (2021) VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 84:100954. https://doi.org/10.1016/j.preteyeres.2021.100954

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez-Gutiérrez L, Ferrara N (2023) Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol 24(11):816–834. https://doi.org/10.1038/s41580-023-00631-w

Article  CAS  PubMed  Google Scholar 

Jung E, Ou S, Ahn SS, Yeo H, Lee YH, Shin SY (2023) The JNK-EGR1 signaling axis promotes TNF-α-induced endothelial differentiation of human mesenchymal stem cells via VEGFR2 expression. Cell Death Differ 30(2):356–368. https://doi.org/10.1038/s41418-022-01088-8

Article  CAS  PubMed  Google Scholar 

Meissner M, Stein M, Urbich C, Reisinger K, Suske G, Staels B et al (2004) PPARalpha activators inhibit vascular endothelial growth factor receptor-2 expression by repressing Sp1-dependent DNA binding and transactivation. Circ Res 94(3):324–332. https://doi.org/10.1161/01.Res.0000113781.08139.81

Article  CAS  PubMed  Google Scholar 

Taoka R, Jinesh GG, Xue W, Safe S, Kamat AM (2017) CF(3)DODA-Me induces apoptosis, degrades Sp1, and blocks the transformation phase of the blebbishield emergency program. Apoptosis 22(5):719–729. https://doi.org/10.1007/s10495-017-1359-1

Article  CAS  PubMed  Google Scholar 

Lanahan AA, Hermans K, Claes F, Kerley-Hamilton JS, Zhuang ZW, Giordano FJ et al (2010) VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell 18(5):713–724. https://doi.org/10.1016/j.devcel.2010.02.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaik S, Nucera C, Inuzuka H, Gao D, Garnaas M, Frechette G et al (2012) SCF(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J Exp Med 209(7):1289–1307. https://doi.org/10.1084/jem.20112446

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou HJ, Xu Z, Wang Z, Zhang H, Zhuang ZW, Simons M et al (2018) SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis. Nat Commun 9(1):3303. https://doi.org/10.1038/s41467-018-05812-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zecchin A, Pattarini L, Gutierrez MI, Mano M, Mai A, Valente S et al (2014) Reversible acetylation regulates vascular endothelial growth factor receptor-2 activity. J Mol Cell Biol 6(2):116–127. https://doi.org/10.1093/jmcb/mju010

Article  CAS  PubMed  Google Scholar 

Kang DH, Kim Y, Min S, Lee SY, Chung KY, Baek IJ et al (2023) Blood flow patterns switch VEGFR2 activity through differential S-nitrosylation and S-oxidation. Cell Rep 42(11):113361. https://doi.org/10.1016/j.celrep.2023.113361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao Y, Langer R, Ferrara N (2023) Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discov 22(6):476–495. https://doi.org/10.1038/s41573-023-00671-z

Article  CAS  PubMed  Google Scholar 

Liao Y, Zhang W, Liu Y, Zhu C, Zou Z (2024) The role of ubiquitination in health and disease. MedComm (2020) 5(10):e736. https://doi.org/10.1002/mco2.736

Article  CAS  PubMed  Google Scholar 

Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192. https://doi.org/10.1146/annurev-biochem-061516-044916

Article  CAS  PubMed  Google Scholar 

Lim R, Sugino T, Nolte H, Andrade J, Zimmermann B, Shi C et al (2019) Deubiquitinase USP10 regulates notch signaling in the endothelium. Science 364(6436):188–193. https://doi.org/10.1126/science.aat0778

Article  CAS  PubMed  Google Scholar 

Gao J, Sun L, Huo L, Liu M, Li D, Zhou J (2010) CYLD regulates angiogenesis by mediating vascular endothelial cell migration. Blood 115(20):4130–4137. https://doi.org/10.1182/blood-2009-10-248526

Article  CAS  PubMed  Google Scholar 

Fu Y, Wang H, Dai H, Zhu Q, Cui CP, Sun X et al (2021) OTULIN allies with LUBAC to govern angiogenesis by editing ALK1 linear polyubiquitin. Mol Cell 81(15):3187-3204.e3187. https://doi.org/10.1016/j.molcel.2021.05.031

Article  CAS  PubMed  Google Scholar 

Wang J, Ji C, Ye W, Rong Y, Ge X, Wang Z et al (2024) Deubiquitinase UCHL1 promotes angiogenesis and blood-spinal cord barrier function recovery after spinal cord injury by stabilizing Sox17. Cell Mol Life Sci 81(1):137. https://doi.org/10.1007/s00018-024-05186-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dwane L, O’Connor AE, Das S, Moran B, Mulrane L, Pinto-Fernandez A et al (2020) A functional genomic screen identifies the deubiquitinase USP11 as a novel transcriptional regulator of ERα in breast cancer. Cancer Res 80(22):5076–5088. https://doi.org/10.1158/0008-5472.Can-20-0214

Article  CAS  PubMed  Google Scholar 

Rong Y, Fan J, Ji C, Wang Z, Ge X, Wang J et al (2022) USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1. Cell Death Differ 29(6):1164–1175. https://doi.org/10.1038/s41418-021-00907-8

Article  CAS  PubMed  Google Scholar 

Liao Y, Zhou D, Wang P, Yang M, Jiang N (2022) Ubiquitin specific peptidase 11 as a novel therapeutic target for cancer management. Cell Death Discov 8(1):292. https://doi.org/10.1038/s41420-022-01083-5

Article 

Comments (0)

No login
gif