Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer’s disease - lessons from pathology. BMC Med [Internet]. 2014 [cited 2020 Jul 24];12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226890/
Esiri MM, Joachim C, Sloan C, Christie S, Agacinski G, Bridges LR, et al. Cerebral subcortical small vessel disease in subjects with pathologically confirmed Alzheimer disease: a clinicopathologic study in the Oxford Project to investigate memory and ageing (OPTIMA). Alzheimer Dis Assoc Disord. 2014;28:30–5.
Article CAS PubMed Google Scholar
Gold G, Giannakopoulos P, Herrmann FR, Bouras C, Kövari E. Identification of Alzheimer and vascular lesion thresholds for mixed dementia. Brain. 2007;130:2830–6.
Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s coordinating centre. Brain. 2013;136:2697–706.
Article PubMed PubMed Central Google Scholar
Jellinger KA. Understanding the pathology of vascular cognitive impairment. J Neurol Sci. 2005;229–230:57–63.
Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis. 2011;26:627–45.
Article CAS PubMed Google Scholar
Marcus C, Mena E, Subramaniam RM. Brain PET in the diagnosis of Alzheimer’s Disease. Clin Nucl Med. 2014;39:e413–26.
Article PubMed PubMed Central Google Scholar
Morbelli S, Brugnolo A, Bossert I, Buschiazzo A, Frisoni GB, Galluzzi S, et al. Visual Versus Semi-quantitative Analysis of 18F-FDG-PET in Amnestic MCI: an European Alzheimer’s Disease Consortium (EADC) Project. J Alzheimer’s Disease. 2015;44:815–26.
Tripathi M, Tripathi M, Damle N, Kushwaha S, Jaimini A, D’Souza MM et al. Differential diagnosis of neurodegenerative dementias using metabolic phenotypes on F-18 FDG PET/CT. Neuroradiol J 27:13–21.
Jo T, Nho K, Saykin AJ. Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Frontiers in Aging Neuroscience [Internet]. 2019 [cited 2022 Jan 25];11. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fnagi.2019.00220
Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage. 2002;17:302–16.
Article CAS PubMed Google Scholar
Sarikaya I, Sarikaya A, Elgazzar AH. Current status of 18F-FDG PET brain imaging in patients with dementia. J Nucl Med Technol. 2018;46:362–7.
Yadav SS, Jadhav SM. Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data. 2019;6:113.
Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? arXiv:14111792 [cs] [Internet]. 2014 [cited 2020 Jul 24]; Available from: http://arxiv.org/abs/1411.1792
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. pp. 770–8.
Gauthier S, Feldman HH, Schneider LS, Wilcock GK, Frisoni GB, Hardlund JH, et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet. 2016;388:2873–84.
Article CAS PubMed PubMed Central Google Scholar
Wilcock GK, Gauthier S, Frisoni GB, Jia J, Hardlund JH, Moebius HJ, et al. Potential of Low Dose Leuco-Methylthioninium Bis(Hydromethanesulphonate) (LMTM) Monotherapy for treatment of mild Alzheimer’s Disease: Cohort Analysis as Modified Primary Outcome in a phase III clinical trial. J Alzheimers Dis. 2018;61:435–57.
Article CAS PubMed Google Scholar
Schelter BO, Shiells H, Baddeley TC, Rubino CM, Ganesan H, Hammel J, et al. Concentration-dependent activity of Hydromethylthionine on Cognitive decline and brain atrophy in mild to moderate Alzheimer’s Disease. J Alzheimers Dis. 2019;72:931–46.
Article CAS PubMed PubMed Central Google Scholar
Haense C, Herholz K, Heiss W-D. Validation of an automated FDG PET analysis to discriminate patients with Alzheimer’s disease from normal subjects. J Nucl Med. 2008;49:P34–34.
Nugent S, Croteau E, Potvin O, Castellano C-A, Dieumegarde L, Cunnane SC, et al. Selection of the optimal intensity normalization region for FDG-PET studies of normal aging and Alzheimer’s disease. Sci Rep. 2020;10:9261.
Article CAS PubMed PubMed Central Google Scholar
De Reuck J. The impact of cerebral amyloid angiopathy in various neurodegenerative dementia syndromes: a neuropathological study. Neurol Res Int. 2019;2019:7247325.
Article PubMed PubMed Central Google Scholar
Navarro-Orozco D, Sánchez-Manso JC, Neuroanatomy. Middle Cerebral Artery. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 [cited 2020 Jul 14]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK526002/
Perosa V, Priester A, Ziegler G, Cardenas-Blanco A, Dobisch L, Spallazzi M, et al. Hippocampal vascular reserve associated with cognitive performance and hippocampal volume. Brain. 2020;143:622–34.
Article PubMed PubMed Central Google Scholar
Rawat W, Wang Z. Deep convolutional neural networks for image classification: a Comprehensive Review. Neural Comput. 2017;29:2352–449.
Korolev S, Safiullin A, Belyaev M, Dodonova Y, Residual. and Plain Convolutional Neural Networks for 3D Brain MRI Classification. arXiv:170106643 [cs] [Internet]. 2017 [cited 2020 Jul 27]; Available from: http://arxiv.org/abs/1701.06643
Lu D, Popuri K, Ding GW, Balachandar R, Beg MF. Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer’s Disease using structural MR and FDG-PET images. Sci Rep [Internet]. 2018 [cited 2020 Jul 27];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890270/
Ramzan F, Khan MUG, Rehmat A, Iqbal S, Saba T, Rehman A, et al. A Deep Learning Approach for Automated diagnosis and Multi-class classification of Alzheimer’s Disease stages using resting-state fMRI and residual neural networks. J Med Syst. 2019;44:37.
Comments (0)