Geng X, Zhao Q, Yuan H, Li HL, Guo CY, Yang T, et al. The important role of whole-process computed tomography guidance for percutaneous gastrostomy in esophageal cancer patients who are unsuitable for or have had unsuccessful attempts with endoscopic and fluoroscopic gastrostomy. BMC Gastroenterol. 2024;24(1):14.
Article PubMed PubMed Central Google Scholar
Mohapatra S, Al Ghamdi SS, Charilaou P, Lopimpisuth C, Das A, Ngamruengphong S. Predictors for lymph node metastasis and survival of patients with T1b esophageal adenocarcinoma treated with surgery and endoscopic therapy: an analysis of the Surveillance, Epidemiology, and End Results database. Gastrointest Endosc. 2024;9:S0016–5107(24)03190–0.
Li M, Shao D, Fan Z, Qin J, Xu J, Huang Q, et al. Non-invasive early detection on esophageal squamous cell carcinoma and precancerous lesions by microbial biomarkers combining epidemiological factors in China. J Gastroenterol. 2024;59(7):531–42.
Article CAS PubMed Google Scholar
Chandar AK, Keerthy K, Gupta R, Grady WM, Canto MI, Shaheen NJ, et al. Patients With Esophageal Adenocarcinoma With Prior Gastroesophageal Reflux Disease Symptoms Are Similar to Those Without Gastroesophageal Reflux Disease: A Cross-Sectional Study. Am J Gastroenterol. 2024;119(5):823–9.
Article CAS PubMed Google Scholar
Liu CQ, Ma YL, Qin Q, Wang PH, Luo Y, Xu PF, et al. Epidemiology of esophageal cancer in 2020 and projections to 2030 and 2040. Thorac Cancer. 2023;14(1):3–11.
Sabatelle RC, Colson YL, Sachdeva U, Grinstaff MW. Drug Delivery Opportunities in Esophageal Cancer: Current Treatments and Future Prospects. Mol Pharm. 2024;21(7):3103–20.
Article CAS PubMed PubMed Central Google Scholar
Lander S, Lander E, Gibson MK. Esophageal Cancer: Overview, Risk Factors, and Reasons for the Rise. Curr Gastroenterol Rep. 2023;25(11):275–9.
Akahane K, Hatanaka S, Kawahara M, Endo M, Fukuda Y, Okada K, et al. Recurrence Pattern, Treatment Modalities, and Prognostic Factors After Definitive Chemoradiotherapy for Recurrent Esophageal Cancer. J Gastrointest Cancer. 2024;55(2):809–19.
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, et al. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel). 2024;17(8):975.
Article CAS PubMed Google Scholar
Sharma A, Kaur M, Katnoria JK, Nagpal AK. Polyphenols in Food: Cancer Prevention and Apoptosis Induction. Curr Med Chem. 2018;25(36):4740–57.
Article CAS PubMed Google Scholar
Wang Y. The interplay of exercise and polyphenols in cancer treatment: A focus on oxidative stress and antioxidant mechanisms. Phytother Res. 2024;38(7):3459–88.
Weh KM, Zhang Y, Howard CL, Howell AB, Clarke JL, Kresty LA. Cranberry Polyphenols in Esophageal Cancer Inhibition: New Insights. Nutrients. 2022;14(5):969.
Article CAS PubMed PubMed Central Google Scholar
Davoodvandi A, Shabani Varkani M, Clark CCT, Jafarnejad S. Quercetin as an anticancer agent: Focus on esophageal cancer. J Food Biochem. 2020;44(9):e13374.
Article CAS PubMed Google Scholar
Xu HT, Zheng Q, Tai ZG, Jiang WC, Xie SQ, Luo Y, et al. Formononetin attenuates psoriasiform inflammation by regulating interferon signaling pathway. Phytomedicine. 2024;128:155412.
Article CAS PubMed Google Scholar
Aliya S, Alhammadi M, Park U, Tiwari JN, Lee JH, Han YK, et al. The potential role of formononetin in cancer treatment: An updated review. Biomed Pharmacother. 2023;168:115811.
Article CAS PubMed Google Scholar
Chen L, Xing D, Guo LR, Jin J, Li S. Formononetin, an Active Component of Astragalus Membranaceus, Inhibits the Pathogenesis and Progression of Esophageal Cancer Through the COX-2/Cyclin D1 Axis. Clin Lab. 2023;69(3).69(3). https://doi.org/10.7754/Clin.Lab.2022.220403.
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, et al. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxid Med Cell Longev. 2021;2021:3268136.
Article PubMed PubMed Central Google Scholar
Shete V, Mahajan NM, Shivhare R, Akkewar A, Gupta A, Gurav S. Genistein: A promising phytoconstituent with reference to its bioactivities. Phytother Res. 2024;38(8):3935–53.
Article CAS PubMed Google Scholar
Jefferson WN, Padilla-Banks E, Newbold RR. Disruption of the female reproductive system by the phytoestrogen genistein. Reprod Toxicol. 2007;23(3):308–16.
Article CAS PubMed Google Scholar
Akimoto T, Nonaka T, Ishikawa H, Sakurai H, Saitoh JI, Takahashi T, et al. Genistein, a tyrosine kinase inhibitor, enhanced radiosensitivity in human esophageal cancer cell lines in vitro: possible involvement of inhibition of survival signal transduction pathways. Int J Radiat Oncol Biol Phys. 2001;50(1):195–201.
Article CAS PubMed Google Scholar
Peng WX, Wang LS, Li HD, Abd El-Aty AM, Chen GL, Zhou HH. Evidence for the involvement of human liver microsomes CYP1A2 in the mono-hydroxylation of daidzein. Clin Chim Acta. 2003;334(1–2):77–85.
Article CAS PubMed Google Scholar
Lim TG, Lee SY, Duan Z, Lee MH, Chen H, Liu F, et al. The Prolyl Isomerase Pin1 Is a Novel Target of 6,7,4’-Trihydroxyisoflavone for Suppressing Esophageal Cancer Growth. Cancer Prev Res (Phila). 2017;10(5):308–18.
Article CAS PubMed Google Scholar
Liga S, Paul C. Puerarin-A Promising Flavonoid: Biosynthesis, Extraction Methods, Analytical Techniques, and Biological Effects. Int J Mol Sci. 2024;25(10):5222.
Article CAS PubMed PubMed Central Google Scholar
Wang J, Yang ZR, Guo XF, Song J, Zhang JX, Wang J, et al. Synergistic effects of puerarin combined with 5-fluorouracil on esophageal cancer. Mol Med Rep. 2014;10(5):2535–41.
Article CAS PubMed Google Scholar
Li C, Yu J, Feng Y, Sun X, Sun M, Ni W, et al. Rhein suppresses esophageal cancer development by regulating cell cycle through DNMT3B gene. Med Oncol. 2024;41(6):153.
Article CAS PubMed Google Scholar
Hassan A, Akram W, Rizwana H, Aftab ZE, Hanif S, Anjum T, et al. The Imperative Use of Bacillus Consortium and Quercetin Contributes to Suppress Fusarium Wilt Disease by Direct Antagonism and Induced Resistance. Microorganisms. 2023;11(10):2603.
Article CAS PubMed PubMed Central Google Scholar
Zhu X, Ding G, Ren S, Xi J, Liu K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem. 2024;458:140262.
Article CAS PubMed Google Scholar
Ungurianu A, Zanfirescu A, Margină D. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits. Phytother Res. 2024;38(5):2361–87.
Article CAS PubMed Google Scholar
Chuang-Xin L, Wen-Yu W, Yao C, Xiao-Yan L, Yun Z. Quercetin enhances the effects of 5-fluorouracil-mediated growth inhibition and apoptosis of esophageal cancer cells by inhibiting NF-κB. Oncol Lett. 2012;4(4):775–8.
Article PubMed PubMed Central Google Scholar
Rajesh RU, Sangeetha D. Therapeutic potentials and targeting strategies of quercetin on cancer cells: Challenges and future prospects. Phytomedicine. 2024;133:155902.
Xie Y, Wang Y, Xiang W, Wang Q, Cao Y. Molecular Mechanisms of the Action of Myricetin in Cancer. Mini Rev Med Chem. 2020;20(2):123–33.
Article CAS PubMed Google Scholar
Sultana B, Anwar F. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 2008;108(3):879–84.
Comments (0)