Ramagopalan SV, Dobson R, Meier UC, Giovannoni G. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. 2010;9:727–39.
Alfredsson L, Olsson T. Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harb Perspect Med [Internet]. 2019;9. Available from: https://doi.org/10.1101/cshperspect.a028944
International Multiple Sclerosis Genetics Consortium. A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat Commun. 2019;10:2236.
Giovannoni G. The neurodegenerative prodrome in multiple sclerosis. Lancet Neurol. 2017;16:413–4.
Munger KL, Levin LI, O’Reilly EJ, Falk KI, Ascherio A. Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult Scler. 2011;17:1185–93.
Article CAS PubMed PubMed Central Google Scholar
Pakpoor J, Giovannoni G, Ramagopalan SV. Epstein-Barr virus and multiple sclerosis: association or causation? Expert Rev Neurother. 2013;13:287–97.
Article CAS PubMed Google Scholar
Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A. Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol. 2010;67:824–30.
Article PubMed PubMed Central Google Scholar
Pakpoor J, Disanto G, Gerber JE, Dobson R, Meier UC, Giovannoni G, et al. The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scler. 2013;19:162–6.
Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science [Internet]. 2022; Available from: https://doi.org/10.1126/science.abj8222
Lanz TV, Robinson WH, Ho PP, Steinman L. Roadmap for understanding mechanisms on how Epstein-Barr virus triggers multiple sclerosis and for translating these discoveries in clinical trials. Clin Transl Immunology. 2023;12:e1438.
Article CAS PubMed PubMed Central Google Scholar
Läderach F, Münz C. Altered Immune Response to the Epstein-Barr Virus as a Prerequisite for Multiple Sclerosis. Cells [Internet]. 2022;11. Available from: https://doi.org/10.3390/cells11172757
Sospedra M, Martin R. Molecular mimicry in multiple sclerosis. Autoimmunity. 2006;39:3–8.
Article CAS PubMed Google Scholar
Martin R, Sospedra M, Eiermann T, Olsson T. Multiple sclerosis: doubling down on MHC. Trends Genet. 2021;37:784–97.
Article CAS PubMed Google Scholar
Lanz TV, Brewer RC, Ho PP, Moon J-S, Jude KM, Fernandez D, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022;603:321–7.
Article CAS PubMed PubMed Central Google Scholar
Vietzen H, Berger SM, Kühner LM, Furlano PL, Bsteh G, Berger T, et al. Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell. 2023;186:5705-18.e13.
Article CAS PubMed Google Scholar
Hill AB. THE ENVIRONMENT AND DISEASE: ASSOCIATION OR CAUSATION? Proc R Soc Med. 1965;58:295–300.
CAS PubMed PubMed Central Google Scholar
Giovannoni G. Epstein-Barr Virus and MS. Int MS J. 2011;17:44–9.
Giovannoni G, Cutter GR, Lunemann J, Martin R, Münz C, Sriram S, et al. Infectious causes of multiple sclerosis. Lancet Neurol. 2006;5:887–94.
Taylor D, Almond J, Ascherio A, Cohen J, Cuzick J, Giovannoni G, et al. Report of the Wolfson Institute Workshop on Epstein Barr Virus Infection and Multiple Sclerosis Prevention. 2017.
Maple PA, Ascherio A, Cohen JI, Cutter G, Giovannoni G, Shannon-Lowe C, et al. The Potential for EBV Vaccines to Prevent Multiple Sclerosis. Front Neurol. 2022;13:887794.
Article PubMed PubMed Central Google Scholar
Nelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus. 2014;23:596–605.
Article CAS PubMed Google Scholar
Bakkalci D, Jia Y, Winter JR, Lewis JE, Taylor GS, Stagg HR. Risk factors for Epstein Barr virus-associated cancers: a systematic review, critical appraisal, and mapping of the epidemiological evidence. J Glob Health. 2020;10:010405.
Article PubMed PubMed Central Google Scholar
Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci. 2020;77:4315–24.
Article PubMed PubMed Central Google Scholar
van Zyl DG, Mautner J, Delecluse H-J. Progress in EBV Vaccines. Front. Oncol. 2019;9:104.
Aloisi F, Giovannoni G, Salvetti M. Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy. Lancet Neurol. 2023;22:338–49.
Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Yeh EA, Gold J. Is EBV the cause of multiple sclerosis? Mult Scler Relat Disord. 2022;58:103636.
Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One [Internet]. 2010;5. Available from: https://doi.org/10.1371/journal.pone.0012496
Thacker EL, Mirzaei F, Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol. 2006;59:499–503.
Hedström AK, Huang J, Michel A, Butt J, Brenner N, Hillert J, et al. High Levels of Epstein-Barr Virus Nuclear Antigen-1-Specific Antibodies and Infectious Mononucleosis Act Both Independently and Synergistically to Increase Multiple Sclerosis Risk. Front Neurol. 2019;10:1368.
Pender MP, Csurhes PA, Smith C, Douglas NL, Neller MA, Matthews KK, et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight [Internet]. 2018;3. Available from: https://doi.org/10.1172/jci.insight.124714
Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B Cells are Major Targets for Effective Immunotherapy in Relapsing Multiple Sclerosis. EBioMedicine. 2017;16:41–50.
Article PubMed PubMed Central Google Scholar
Baker D, Pryce G, James LK, Schmierer K, Giovannoni G. Failed B cell survival factor trials support the importance of memory B cells in multiple sclerosis. Eur J Neurol. 2020;27:221–8.
Article CAS PubMed Google Scholar
Giovannoni G. Targeting Epstein-Barr virus in multiple sclerosis: when and how? Curr Opin Neurol. 2024;37:228–36.
Article CAS PubMed Google Scholar
Pender MP, Burrows SR. Epstein-Barr virus and multiple sclerosis: potential opportunities for immunotherapy. Clin Transl Immunology. 2014;3:e27.
Article PubMed PubMed Central Google Scholar
Pender MP, Csurhes PA, Pfluger CM, Burrows SR. Deficiency of CD8+ effector memory T cells is an early and persistent feature of multiple sclerosis. Mult Scler. 2014;20:1825–32.
Article PubMed PubMed Central Google Scholar
Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung H-P, Maniar T, et al. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol Med. 2020;26:296–310.
Article CAS PubMed Google Scholar
Atara. Atara Biotherapeutics Announces Primary Analysis Data from Phase 2 EMBOLD Clinical Trial of ATA188 in Non-Active Progressive Multiple Sclerosis [Internet]. Atara Biotherapeutics. 2023 [cited 2023 Nov 29]. Available from: https://investors.atarabio.com/news-events/press-releases/detail/330/atara-biotherapeutics-announces-primary-analysis-data-from
Noteboom S, Arnold D, Bar-Or A, Pender M, Hodgkinson S, Broadley S, et al. Long-term disability improvement during EBV-targeted T-cell immunotherapy ATA188 is related to brain volume change and normalised magnetisation transfer ratio in T2 lesions. Mult Scler J. 2022;28:1006–7.
Bar-Or A, Pender MP, Hodgkinson SJ, Broadley S, Lindsey JW, Ioannides ZA, et al. Updated open-label extension clinical data and new magnetization transfer ratio imaging data from a phase I study of ATA188, an off-the-shelf, allogeneic Epstein-Barr virus-targeted T-cell immunotherapy for progressive multiple sclerosis. MULTIPLE SCLEROSIS JOURNAL. SAGE PUBLICATIONS LTD 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND; 2022. p. 72–72.
Smith C, Khanna R. Adoptive T-cell therapy targeting
Comments (0)