Mead RJ, et al. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov. 2023;22(3):185–212.
Article CAS PubMed Google Scholar
Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918–29.
Article CAS PubMed Google Scholar
Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol. 2019;32(5):771–6.
Article CAS PubMed PubMed Central Google Scholar
Orsini M, et al. Amyotrophic lateral sclerosis: new perpectives and update. Neurol Int. 2015;7(2):5885.
Article PubMed PubMed Central Google Scholar
Bennett SA, et al. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res. 2019;204:19–30.
Article CAS PubMed Google Scholar
Coppede F, et al. Increase in DNA methylation in patients with amyotrophic lateral sclerosis carriers of not fully penetrant SOD1 mutations. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(1–2):93–101.
Article CAS PubMed Google Scholar
Bauer PO. Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neurosci Lett. 2016;612:204–9.
Article CAS PubMed Google Scholar
Kim HC, et al. MicroRNA-183-5p regulates TAR DNA-binding protein 43 neurotoxicity via SQSTM1/p62 in amyotrophic lateral sclerosis. J Neurochem. 2023;164(5):643–57.
Article CAS PubMed Google Scholar
Ingre C, et al. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015;7:181–93.
PubMed PubMed Central Google Scholar
De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis. 2017;105:283–99.
Article PubMed PubMed Central Google Scholar
Sasaki S, Iwata M. Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2007;66(1):10–6.
Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett. 2019;710:132933.
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener. 2024;13(1):46.
Article PubMed PubMed Central Google Scholar
Mendez-Lopez I, Sancho-Bielsa FJ, Engel T, Garcia AG, Padin JF. Progressive mitochondrial SOD1(G93A) accumulation causes severe structural, metabolic and functional aberrations through OPA1 down-regulation in a mouse model of amyotrophic lateral sclerosis. Int J Mol Sci. 2021;22(15). https://doi.org/10.3390/ijms22158194.
Ruiz-Ruiz C, Calzaferri F, Garcia AG. P2X7 Receptor antagonism as a potential therapy in amyotrophic lateral sclerosis. Front Mol Neurosci. 2020;13:93.
Article CAS PubMed PubMed Central Google Scholar
Di Virgilio F, et al. The P2X7 Receptor in Infection and Inflammation. Immunity. 2017;47(1):15–31.
Xie Y, et al. P2X7 receptor antagonists modulate experimental autoimmune neuritis via regulation of NLRP3 inflammasome activation and Th17 and Th1 cell differentiation. J Neuroinflammation. 2024;21(1):73.
Article CAS PubMed PubMed Central Google Scholar
Zou YT, et al. The impact of the P2X7 receptor on the tumor immune microenvironment and its effects on tumor progression. Biochem Biophys Res Commun. 2024;707:149513.
Article CAS PubMed Google Scholar
Zheng H, et al. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol. 2024;15:1345625.
Article CAS PubMed PubMed Central Google Scholar
Ruiz-Ruiz C, Garcia-Magro N, Negredo P, Avendano C, Bhattacharya A, Ceusters M, Garcia AG. Chronic administration of P2X7 receptor antagonist JNJ-47965567 delays disease onset and progression, and improves motor performance in ALS SOD1(G93A) female mice. Dis Model Mech. 2020;13(10). https://doi.org/10.1242/dmm.045732.
Nardo G, et al. New insights on the mechanisms of disease course variability in ALS from mutant SOD1 mouse models. Brain Pathol. 2016;26(2):237–47.
Article CAS PubMed PubMed Central Google Scholar
Jaiswal MK. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Med Res Rev. 2019;39(2):733–48.
Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994;330(9):585–91.
Article CAS PubMed Google Scholar
Andrews JA, et al. Real-world evidence of riluzole effectiveness in treating amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(7–8):509–18.
Article CAS PubMed Google Scholar
Edaravone Als 16 Study G. A post-hoc subgroup analysis of outcomes in the first phase III clinical study of edaravone (MCI-186) in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(sup1): 11–19.
Watanabe K, et al. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr. 2018;62(1):20–38.
Article CAS PubMed Google Scholar
Shen Y, et al. Ultrasound-enhanced brain delivery of edaravone provides additive amelioration on disease progression in an ALS mouse model. Brain Stimul. 2023;16(2):628–41.
Rodriguez-Frutos B, et al. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke. Biomaterials. 2016;100:41–52.
Article CAS PubMed Google Scholar
Zhang J, et al. Pathology reduction and motor behavior improvement associated with ultrasound-mediated delivery of arctiin to the motor cortex in a mutant SOD1 mouse model of amyotrophic lateral sclerosis. Ultrasonics. 2024;144:107449.
Article CAS PubMed Google Scholar
Sun Y, et al. ALSUntangled #71: Nuedexta. Amyotroph Lateral Scler Frontotemporal Degener. 2024;25(1–2):218–22.
Article CAS PubMed Google Scholar
Nguyen L, et al. Dextromethorphan: an update on its utility for neurological and neuropsychiatric disorders. Pharmacol Ther. 2016;159:1–22.
Article CAS PubMed Google Scholar
Ketabforoush A, et al. Masitinib: The promising actor in the next season of the Amyotrophic Lateral Sclerosis treatment series. Biomed Pharmacother. 2023;160:114378.
Article CAS PubMed Google Scholar
Hamad AA, et al. Masitinib as a neuroprotective agent: a scoping review of preclinical and clinical evidence. Neurol Sci. 2024;45(5):1861–73.
Trias E, et al. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J Neuroinflammation. 2016;13(1):177.
Article PubMed PubMed Central Google Scholar
Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206.
Comments (0)