Drug Combination to Slow Down the Progression of Amyotrophic Lateral Sclerosis

Mead RJ, et al. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov. 2023;22(3):185–212.

Article  CAS  PubMed  Google Scholar 

Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918–29.

Article  CAS  PubMed  Google Scholar 

Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol. 2019;32(5):771–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orsini M, et al. Amyotrophic lateral sclerosis: new perpectives and update. Neurol Int. 2015;7(2):5885.

Article  PubMed  PubMed Central  Google Scholar 

Bennett SA, et al. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res. 2019;204:19–30.

Article  CAS  PubMed  Google Scholar 

Coppede F, et al. Increase in DNA methylation in patients with amyotrophic lateral sclerosis carriers of not fully penetrant SOD1 mutations. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(1–2):93–101.

Article  CAS  PubMed  Google Scholar 

Bauer PO. Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neurosci Lett. 2016;612:204–9.

Article  CAS  PubMed  Google Scholar 

Kim HC, et al. MicroRNA-183-5p regulates TAR DNA-binding protein 43 neurotoxicity via SQSTM1/p62 in amyotrophic lateral sclerosis. J Neurochem. 2023;164(5):643–57.

Article  CAS  PubMed  Google Scholar 

Ingre C, et al. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015;7:181–93.

PubMed  PubMed Central  Google Scholar 

De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis. 2017;105:283–99.

Article  PubMed  PubMed Central  Google Scholar 

Sasaki S, Iwata M. Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2007;66(1):10–6.

Article  PubMed  Google Scholar 

Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett. 2019;710:132933.

Article  PubMed  Google Scholar 

Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener. 2024;13(1):46.

Article  PubMed  PubMed Central  Google Scholar 

Mendez-Lopez I, Sancho-Bielsa FJ, Engel T, Garcia AG, Padin JF. Progressive mitochondrial SOD1(G93A) accumulation causes severe structural, metabolic and functional aberrations through OPA1 down-regulation in a mouse model of amyotrophic lateral sclerosis. Int J Mol Sci. 2021;22(15). https://doi.org/10.3390/ijms22158194.

Ruiz-Ruiz C, Calzaferri F, Garcia AG. P2X7 Receptor antagonism as a potential therapy in amyotrophic lateral sclerosis. Front Mol Neurosci. 2020;13:93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Virgilio F, et al. The P2X7 Receptor in Infection and Inflammation. Immunity. 2017;47(1):15–31.

Article  PubMed  Google Scholar 

Xie Y, et al. P2X7 receptor antagonists modulate experimental autoimmune neuritis via regulation of NLRP3 inflammasome activation and Th17 and Th1 cell differentiation. J Neuroinflammation. 2024;21(1):73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou YT, et al. The impact of the P2X7 receptor on the tumor immune microenvironment and its effects on tumor progression. Biochem Biophys Res Commun. 2024;707:149513.

Article  CAS  PubMed  Google Scholar 

Zheng H, et al. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol. 2024;15:1345625.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruiz-Ruiz C, Garcia-Magro N, Negredo P, Avendano C, Bhattacharya A, Ceusters M, Garcia AG. Chronic administration of P2X7 receptor antagonist JNJ-47965567 delays disease onset and progression, and improves motor performance in ALS SOD1(G93A) female mice. Dis Model Mech. 2020;13(10). https://doi.org/10.1242/dmm.045732.

Nardo G, et al. New insights on the mechanisms of disease course variability in ALS from mutant SOD1 mouse models. Brain Pathol. 2016;26(2):237–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaiswal MK. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Med Res Rev. 2019;39(2):733–48.

Article  PubMed  Google Scholar 

Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994;330(9):585–91.

Article  CAS  PubMed  Google Scholar 

Andrews JA, et al. Real-world evidence of riluzole effectiveness in treating amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(7–8):509–18.

Article  CAS  PubMed  Google Scholar 

Edaravone Als 16 Study G. A post-hoc subgroup analysis of outcomes in the first phase III clinical study of edaravone (MCI-186) in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(sup1): 11–19.

Watanabe K, et al. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr. 2018;62(1):20–38.

Article  CAS  PubMed  Google Scholar 

Shen Y, et al. Ultrasound-enhanced brain delivery of edaravone provides additive amelioration on disease progression in an ALS mouse model. Brain Stimul. 2023;16(2):628–41.

Article  PubMed  Google Scholar 

Rodriguez-Frutos B, et al. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke. Biomaterials. 2016;100:41–52.

Article  CAS  PubMed  Google Scholar 

Zhang J, et al. Pathology reduction and motor behavior improvement associated with ultrasound-mediated delivery of arctiin to the motor cortex in a mutant SOD1 mouse model of amyotrophic lateral sclerosis. Ultrasonics. 2024;144:107449.

Article  CAS  PubMed  Google Scholar 

Sun Y, et al. ALSUntangled #71: Nuedexta. Amyotroph Lateral Scler Frontotemporal Degener. 2024;25(1–2):218–22.

Article  CAS  PubMed  Google Scholar 

Nguyen L, et al. Dextromethorphan: an update on its utility for neurological and neuropsychiatric disorders. Pharmacol Ther. 2016;159:1–22.

Article  CAS  PubMed  Google Scholar 

Ketabforoush A, et al. Masitinib: The promising actor in the next season of the Amyotrophic Lateral Sclerosis treatment series. Biomed Pharmacother. 2023;160:114378.

Article  CAS  PubMed  Google Scholar 

Hamad AA, et al. Masitinib as a neuroprotective agent: a scoping review of preclinical and clinical evidence. Neurol Sci. 2024;45(5):1861–73.

Article  PubMed  Google Scholar 

Trias E, et al. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J Neuroinflammation. 2016;13(1):177.

Article  PubMed  PubMed Central  Google Scholar 

Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206.

Comments (0)

No login
gif