Machine learning classifier solving the problem of sleep stage imbalance between overnight sleep

Steptoe A, O’Donnell K, Marmot M, Wardle JP, Affect. Psychological Well-being, and good sleep. J Psychosom Res. 2008;64:409–15. https://doi.org/10.1016/j.jpsychores.2007.11.008.

Article  Google Scholar 

Rundo JV, Downey R. Polysomnography. In: Handbook of clinical neurology, vol 160. 2019. pp. 381–392.

Deak M, Epstein LJ. The history of polysomnography. Sleep Med Clin. 2009;4:313–21. https://doi.org/10.1016/j.jsmc.2009.04.001.

Article  MATH  Google Scholar 

Menghini L, Cellini N, Goldstone A, Baker FC, De Zambotti M. A standardized Framework for testing the performance of sleep-tracking technology: step-by-step guidelines and open-source code. Sleep. 2021;44. https://doi.org/10.1093/sleep/zsaa170.

Carskadon MA, Dement WC. Normal human sleep: an overview. In: Principles and practice of sleep medicine. 2005. pp. 13–23. (ISBN 9781416066453)

Boostani R, Karimzadeh F, Nami MA. Comparative review on sleep stage classification methods in patients and healthy individuals. Comput Methods Programs Biomed. 2017;140:77–91. https://doi.org/10.1016/j.cmpb.2016.12.004.

Article  Google Scholar 

Berry RB, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Quan SF, Troester MT, Vaughn BV. AASM Scoring manual updates for 2017 (version 2.4). J Clin Sleep Med. 2017;13:665–6. https://doi.org/10.5664/jcsm.6576.

Article  Google Scholar 

Park J, An J, Choi SH. Sleep stage classification using deep learning techniques: a review. IEIE Trans Smart Process Comput. 2023;12:30–7. https://doi.org/10.5573/IEIESPC.2023.12.1.30.

Article  MATH  Google Scholar 

Baek J, Baek S, Yu HS, Lee JH, Park C. End-to-end automatic sleep staging Algorithm using convolution neural network and bidirectional LSTM. IEIE Trans Smart Process Comput. 2021;10:464–8. https://doi.org/10.5573/IEIESPC.2021.10.6.464.

Article  MATH  Google Scholar 

Baek S, Baek J, Yu H, Lee C, Park C. Explainable sleep staging Algorithm using a single-Channel Electroencephalogram. IEIE Trans Smart Process Comput. 2022;11:8–13. https://doi.org/10.5573/IEIESPC.2021.11.1.8.

Article  MATH  Google Scholar 

Dijk DJ. Regulation and functional correlates of slow Wave Sleep. J Clin Sleep Med. 2009;5. https://doi.org/10.5664/jcsm.5.2s.s6.

Hussain I, Hossain MA, Jany R, Bari MA, Uddin M, Kamal ARM, Ku Y, Kim JS. Quantitative evaluation of EEG-Biomarkers for prediction of sleep stages. Sensors. 2022;22. https://doi.org/10.3390/s22083079.

Welch PD. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust. 1967;15:70–3. https://doi.org/10.1109/TAU.1967.1161901.

Article  MATH  Google Scholar 

Fernandez LMJ, Lüthi A. Sleep spindles: mechanisms and functions. Physiol Rev. 2020;100:805–68. https://doi.org/10.1152/physrev.00042.2018.

Article  MATH  Google Scholar 

Kleifges K, Bigdely-Shamlo N, Kerick SE, Robbins KA, BLINKER. Automated extraction of ocular indices from EEG enabling large-scale analysis. Front Neurosci. 2017;11. https://doi.org/10.3389/fnins.2017.00012.

Silva H, Scherer R, Sousa J, Londral A. Towards improving the usability of electromyographic interfaces. Biosyst Biorobotics. 2013;1:437–41. https://doi.org/10.1007/978-3-642-34546-3_71.

Article  Google Scholar 

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57. https://doi.org/10.1613/jair.953.

Article  MATH  Google Scholar 

Torelli GM. Dan Training and assessing classification rules with Imbalanced Data. Data Min Knowl Discov. 2012;28:92–122.

MATH  Google Scholar 

Bharitkar S, Kyriakakis CA. Cluster centroid method for room response equalization at multiple locations. IEEE ASSP Work Appl Signal Process Audio Acoust. 2001;55–8. https://doi.org/10.1109/aspaa.2001.969541.

Byrd J, Lipton ZC. What is the effect of importance weighting in deep learning? In: 36th Int. Conf. Mach. Learn. ICML 2019 2019, 2019-June. pp. 1405–1419.

Vallat R, Walker MP. An open-source, high-performance tool for automated sleep staging. Elife. 2021;10. https://doi.org/10.7554/eLife.70092.

Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Classif Regres Trees. 2017;1–358. https://doi.org/10.1201/9781315139470.

Breiman L, Random. Forests. Random Forests, 1–122. Mach Learn. 2001;45:5–32.

Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63:3–42. https://doi.org/10.1007/s10994-006-6226-1.

Article  MATH  Google Scholar 

J Pandya V. Comparing handwritten character recognition by AdaBoostClassifier and KNeighborsClassifier. Proc - 2016 8th Int Conf Comput Intell Commun Networks CICN 2016. 2017;271–274. https://doi.org/10.1109/CICN.2016.59.

Platt J. Others probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classif. 1999;10:61–74.

MATH  Google Scholar 

Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232. https://doi.org/10.1214/aos/1013203451.

Article  MathSciNet  MATH  Google Scholar 

Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proc ACM SIGKDD Int Conf Knowl Discov Data Min. 2016;13:785–794. https://doi.org/10.1145/2939672.2939785.

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY. LightGBM: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst. 2017;2017:3147–55.

MATH  Google Scholar 

Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. Catboost: unbiased boosting with categorical features. Adv Neural Inf Process Syst. 2018;2018:6638–48.

MATH  Google Scholar 

Dong H, Supratak A, Pan W, Wu C, Matthews PM, Guo Y. Mixed neural network approach for temporal sleep stage classification. IEEE Trans Neural Syst Rehabil Eng. 2018;26:324–33. https://doi.org/10.1109/TNSRE.2017.2733220.

Article  Google Scholar 

Zhao D, Jiang R, Feng M, Yang J, Wang Y, Hou X, Wang XA. Deep learning algorithm based on 1D CNN-LSTM for automatic sleep staging. Technol Heal Care. 2022;30:323–36. https://doi.org/10.3233/THC-212847.

Article  MATH  Google Scholar 

Phan H, Mikkelsen K, Chen OY, Koch P, Mertins A, De Vos M, SleepTransformer. Automatic sleep staging with interpretability and uncertainty quantification. IEEE Trans Biomed Eng. 2022;69:2456–67. https://doi.org/10.1109/TBME.2022.3147187.

Article  Google Scholar 

Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst. 2012;4:2951–9.

MATH  Google Scholar 

Rodríguez JD, Pérez A, Lozano JA. Sensitivity analysis of K-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell. 2010;32:569–75. https://doi.org/10.1109/TPAMI.2009.187.

Article  MATH  Google Scholar 

Arslan RS, Ulutaş H, Köksal AS, Bakır M, Çiftçi B. Automated sleep scoring system using multi-channel data and machine learning. Comput Biol Med. 2022;146. https://doi.org/10.1016/j.compbiomed.2022.105653.

Almutairi H, Hassan GM, Datta A. Classification of sleep stages from EEG, EOG and EMG signals by SSNet. 2023.

Supratak A, Guo Y, TinySleepNet. An efficient deep learning model for sleep stage scoring based on raw single-channel EEG. In: Proc. annu. int. conf. IEEE eng. med. biol. soc. EMBS 2020. 2020. pp. 641–644. https://doi.org/10.1109/EMBC44109.2020.9176741

Phan H, Chen OY, Tran MC, Koch P, Mertins A, De Vos M, XSleepNet. Multi-view sequential model for automatic sleep staging. IEEE Trans Pattern Anal Mach Intell. 2022;44:5903–15. https://doi.org/10.1109/TPAMI.2021.3070057.

Article  Google Scholar 

Efe E, Ozsen S, CoSleepNet. Automated sleep staging using a hybrid CNN-LSTM Network on Imbalanced EEG-EOG datasets. Biomed Signal Process Control. 2023;80:104299. https://doi.org/10.1016/j.bspc.2022.104299.

Article  Google Scholar 

Shen Q, Xin J, Liu X, Wang Z, Li C, Huang Z, Wang Z. LGSleepNet: an automatic sleep staging Model based on local and global representation learning. IEEE Trans Instrum Meas. 2023;72:1–14. https://doi.org/10.1109/TIM.2023.3298639.

Article  MATH  Google Scholar 

Supratak A, Dong H, Wu C, Guo Y, DeepSleepNet:. A model for automatic sleep stage scoring based on raw single-Channel EEG. IEEE Trans Neural Syst Rehabil Eng. 2017;25:1998–2008. https://doi.org/10.1109/TNSRE.2017.2721116.

Article  MATH  Google Scholar 

Sors A, Bonnet S, Mirek S, Vercueil L, Payen JF. A convolutional neural network for sleep stage scoring from raw single-Channel EEG. Biomed Signal Process Control. 2018;42:107–14. https://doi.org/10.1016/j.bspc.2017.12.001.

Article  Google Scholar 

Lal U, Mathavu Vasanthsena S, Hoblidar A. Temporal feature extraction and machine learning for classification of Sleep stages using telemetry polysomnography. Brain Sci. 2023;13. https://doi.org/10.3390/brainsci13081201.

Cash SS, Halgren E, Dehghani N, Rossetti AO, Thesen T, Wang CM, Devinsky O, Kuzniecky R, Doyle W, Madsen JR, et al. The human K-Complex represents an isolated cortical down-state. Sci (80-). 2009;324:1084–7. https://doi.org/10.1126/science.1169626.

Article  Google Scholar 

Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G. The sleep slow oscillation as a traveling Wave. J Neurosci. 2004;24:6862–70. https://doi.org/10.1523/JNEUROSCI.1318-04.2004.

Article  Google Scholar 

Yousef M, Kumar A, Bakir-Gungor B. Application of biological domain knowledge based feature selection on gene expression data. Entropy. 2021;23:1–15. https://doi.org/10.3390/e23010002

Pretel MR, Vidal V, Kienigiel D, Forcato C, Ramele RA. Low-cost and open-hardware portable 3-electrode polysomnography device. Sleep Comput Comm Jpn Soc SLEEP. 2023. https://doi.org/10.31234/osf.io/6mjyr.

Article  Google Scholar 

Hori T, Sugita Y, Koga E, Shirakawa S, Inoue K, Uchida S, Kuwahara H, Kousaka M, Kobayashi T, Tsuji Y, et al. Proposed supplements and amendments to a manual of standardized terminology, techniques and Scoring System for Sleep stages of human subjects, the Rechtschaffen & Kales (1968) Standard. Psychiatry Clin Neurosci. 2001;55:305–10. https://doi.org/10.1046/j.1440-1819.2001.00810.x.

Article  Google Scholar 

Rieke N, Hancox J, Li W, Milletarì F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA, Maier-Hein K, et al. The future of digital health with federated learning. Npj Digit Med. 2020;3. https://doi.org/10.1038/s41746-020-00323-1.

Comments (0)

No login
gif