Berus L, Klancnik S, Brezocnik M, Ficko M. Classifying parkinson’s disease based on acoustic measures using artificial neural networks. Sens (Switzerland). 2019;19. https://doi.org/10.3390/S19010016.
Naseer A, Rani M, Naz S, Razzak MI, Imran M, Xu G. Refining Parkinson’s neurological disorder identification through deep transfer learning. Neural Comput Appl. 2020;32:839–54. https://doi.org/10.1007/S00521-019-04069-0.
Arena JE, Stoessl AJ. Optimizing diagnosis in Parkinson’s disease: Radionuclide imaging. Parkinsonism Relat Disord. 2016;22:S47–51. https://doi.org/10.1016/J.PARKRELDIS.2015.09.029.
Ngo QC, Motin MA, Pah ND, Drotár P, Kempster P, Kumar D. Computerized analysis of speech and voice for Parkinson’s disease: a systematic review. Comput Methods Programs Biomed. 2022;226:107133. https://doi.org/10.1016/J.CMPB.2022.107133.
Arias-Londoño Julián JA D. and, Gómez-García. Predicting UPDRS scores in Parkinson’s Disease using Voice signals: a deep Learning/Transfer-Learning-based Approach. In: Godino-Llorente JI, editor. Automatic Assessment of Parkinsonian Speech. Cham: Springer International Publishing; 2020. pp. 100–23. https://doi.org/10.1007/978-3-030-65654-6_6.
Arias-Vergara T, Vasquez-Correa JC, Orozco-Arroyave JR, Klumpp P, Nöth E. Unobtrusive Monitoring of Speech Impairments of Parkinson’S Disease Patients Through Mobile Devices, in: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018: pp. 6004–6008. https://doi.org/10.1109/ICASSP.2018.8462332
Suppa A, Costantini G, Asci F, Di Leo P, Al-Wardat MS, Di Lazzaro G, Scalise S, Pisani A, Saggio G. Voice in Parkinson’s disease: a machine learning study. Front Neurol. 2022;13:831428. https://doi.org/10.3389/fneur.2022.831428.
Templeton JM, Poellabauer C, Schneider S. Classification of Parkinson’s disease and its stages using machine learning. Sci Rep 2022. 2022;12(12):1. https://doi.org/10.1038/s41598-022-18015-z.
Hsu SY, Yeh LR, Chen TB, Du WC, Huang YH, Twan WH, Lin MC, Hsu YH, Wu YC, Chen HY. Classification of the multiple stages of Parkinson’s disease by a deep convolution neural network based on 99mTc-TRODAT-1 SPECT images. Molecules. 2020;25. https://doi.org/10.3390/MOLECULES25204792.
Zheng X, Phukon B, Hasegawa-Johnson M. Fine-tuning Automatic Speech Recognition for People with Parkinson’s: An Effective Strategy for Enhancing Speech Technology Accessibility, Interspeech 2024, 1–5 September 2024, Kos, Greece.
Radford A, Kim JW, Xu T, Brockman G, McLeavey C, Sutskever I. Robust Speech Recognition via large-scale weak Supervision. Proc Mach Learn Res. 2022;202:28492–518. https://arxiv.org/abs/2212.04356v1.
Baevski A, Zhou H, Mohamed A, Auli M. wav2vec 2.0: a framework for self-supervised learning of speech representations. Adv Neural Inf Process Syst 2020-December (2020).
Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17:427–427. https://doi.org/10.1212/WNL.17.5.427.
Ozbolt AS, Moro-Velazquez L, Lina I, Butala AA, Dehak N. Things to Consider When Automatically Detecting Parkinson’s Disease Using the Phonation of Sustained Vowels: Analysis of Methodological Issues, Applied Sciences 2022, Vol. 12, Page 991 12 (2022) 991. https://doi.org/10.3390/APP12030991
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4. https://doi.org/10.1136/JNNP.55.3.181.
Omberg L, Chaibub Neto E, Perumal TM, Pratap A, Tediarjo A, Adams J, Bloem BR, Bot BM, Elson M, Goldman SM, Kellen MR, Kieburtz K, Klein A, Little MA, Schneider R, Suver C, Tarolli C, Tanner CM, Trister AD, Wilbanks J, Dorsey ER, Mangravite LM. Remote smartphone monitoring of Parkinson’s disease and individual response to therapy. Nat Biotechnol. 2022;40:480–7. https://doi.org/10.1038/s41587-021-00974-9.
P. Faragó, S.-A. Ștefănigă, C.-G. Cordoș, L.-I. Mihăilă, S. Hintea, A.-S. Peștean,M. Beyer, L. Perju-Dumbravă, R.R. Ileșan, CNN-Based Identification of Parkinson’s Disease from Continuous Speech in Noisy Environments, Bioengineering 2023, Vol. 10,Page 531 10 (2023) 531. https://doi.org/10.3390/bioengineering10050531
Asci F, Costantini G, Di Leo P, Zampogna A, Ruoppolo G, Berardelli A, Saggio G, Suppa A. Machine-Learning Analysis of Voice Samples Recorded through Smartphones: The Combined Effect of Ageing and Gender, Sensors 2020, Vol. 20, Page 5022 20 (2020) 5022. https://doi.org/10.3390/S20185022
Vaiciukynas E, Verikas A, Gelzinis A, Bacauskiene M. Detecting Parkinson’s disease from sustained phonation and speech signals. PLoS ONE. 2017;12:e0185613. https://doi.org/10.1371/JOURNAL.PONE.0185613.
Benba A, Jilbab A, Hammouch A. Detecting patients with Parkinson ’ s disease using Mel frequency Cepstral coefficients and Support Vector machines. Int J Electr Eng Inf. 2015;7:297–307.
Moro-Velazquez L, Gomez-Garcia JA, Arias-Londoño JD, Dehak N, Godino-Llorente JI. Advances in Parkinson’s Disease detection and assessment using voice and speech: a review of the articulatory and phonatory aspects. Biomed Signal Process Control. 2021;66:102418. https://doi.org/10.1016/j.bspc.2021.102418.
Boersma P. Praat: doing phonetics by computer. Ear Hear. 2011;32:266. https://doi.org/10.1097/AUD.0b013e31821473f7.
Jadoul Y, Thompson B, de Boer B. Introducing parselmouth: a Python interface to Praat. J Phon. 2018;71:1–15. https://doi.org/10.1016/J.WOCN.2018.07.001.
Pedregosa F, Michel FABIANPEDREGOSAV, Grisel O, Blondel OLIVIERGRISELM, Prettenhofer P, Weiss R, Vanderplas J, Cournapeau D, Pedregosa F, Varoquaux G, Gramfort A, Thirion B, Grisel O, Dubourg V, Passos A, Brucher M. Perrot andÉdouardand, andÉdouard Duchesnay, Fré. Duchesnay EDOUARDDUCHESNAY, Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
MathSciNet MATH Google Scholar
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57. https://doi.org/10.1613/JAIR.953.
Japkowicz N, Stephen S. The class imbalance problem: a systematic study. Intell Data Anal. 2002;6:429–49. https://doi.org/10.3233/IDA-2002-6504.
Filippidou F, Moussiades L. Α benchmarking of IBM, Google and wit automatic speech recognition systems, IFIP Adv Inf Commun Technol 583 IFIP (2020) 73–82. https://doi.org/10.1007/978-3-030-49161-1_7/TABLES/4
Comments (0)