ECGEL: a multimodal 12-lead ECG classification model for heart failure prediction

Ponikowski P, Anker S, Khalid F, Cowie M, Force T, Hu S, Jaarsma T, Krum H, Rastogi V, Rohde L, Samal U, Shimokawa H, Siswanto B, Sliwa K, Filippatos G. Heart failure: preventing disease and death worldwide. ESC Heart Fail. 2014. https://doi.org/10.1002/ehf2.12005.

Article  Google Scholar 

Cardiovascular Health TWC, China D. Summary of the 2021 report on cardiovascular health and diseases in china. Prev Treat Cardiovasc Cerebrovasc Dis. 2022;22(04):20–3640.

MATH  Google Scholar 

Seferovi P, Jankowska E, Coats A, Maggioni A, Lopatin Y, Milinkovi I, Polovina M, Lainak M, Timmis A, Huculeci R, Vardas P, Berger R, Jahangirov T, Kurlianskaya A, Troisfontaines P, Droogne W, Dizdarevic-Hudic L, Tokmakova M, Glavas D, Voronkov L. The heart failure association atlas: rationale, objectives, and methods. Eur J Heart Fail. 2020. https://doi.org/10.1002/ejhf.1768.

Article  Google Scholar 

Heidenreich P, Bozkurt B, Aguilar D, Allen L, Byun J, Colvin M, Deswal A, Drazner M, Dunlay S, Evers L, Fang J, Fedson S, Fonarow G, Hayek S, Hernandez A, Khazanie P, Kittleson M, Lee C, Link M, Yancy C. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;2022:145. https://doi.org/10.1161/CIR.0000000000001063.

Article  Google Scholar 

Palermi S, Bragazzi N, ular D, Ardig L, Padulo J. Human movement (ISSN 1899-1955) how chest press-based exercises can alleviate the burden of cardiovascular diseases 2022;23(4). Human Mov. 2022. https://doi.org/10.5114/hm.2021.106911.

Article  Google Scholar 

Kannel W, D’Agostino R, Silbershatz H, Belanger A, Wilson P, Levy D. Profile for estimating risk of heart failure. Arch Internal Med. 1999;159:1197–204. https://doi.org/10.1001/archinte.159.11.1197.

Article  Google Scholar 

Butler J, Kalogeropoulos A, Georgiopoulou V, Belue R, Rodondi N, Garca M, Bauer D, Satterfield S, Smith A, Vaccarino V, Newman A, Harris T, Wilson P, Kritchevsky S. Incident heart failure prediction in the elderly the health ABC heart failure score. Circ Heart Fail. 2008;1:125–33. https://doi.org/10.1161/CIRCHEARTFAILURE.108.768457.

Article  Google Scholar 

Agarwal S, Chambless L, Ballantyne C, Astor B, Bertoni A, Chang P, Folsom A, He M, Hoogeveen R, Ni H, Quibrera P, Rosamond W, Russell S, Shahar E, Heiss G. Prediction of incident heart failure in general practice the atherosclerosis risk in communities (ARIC) study. Circ Heart Fail. 2012;5:422–9. https://doi.org/10.1161/CIRCHEARTFAILURE.111.964841.

Article  Google Scholar 

Butler L, akbilgic o, Karabayir I, Chang P, Kitzman D, Alonso A, Chen L, Soliman EZ,. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure. Digital Health: Doi; 2021. https://doi.org/10.1093/ehjdh/ztab080.

Book  Google Scholar 

Gonzlez S, Hsieh W-T, Burba D, Chen T, Wang C-L, Wu VC-C, Tung Y-C. Interpretable estimation of the risk of heart failure hospitalization from a 30-second electrocardiogram. https://doi.org/10.48550/arXiv.2211.00819

Lu W, Jiang J, Ma L, Chen H, Wu H, Gong M, Jiang X, Fan M. An arrhythmia classification algorithm using C-LSTM in physiological parameters monitoring system under internet of health things environment. J Ambient Intell Humanized Comput. 2021. https://doi.org/10.1007/s12652-021-03456-7.

Article  MATH  Google Scholar 

Huang J, Chen B, Yao B, He W. ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access. 2019;7:92871–92880. https://doi.org/10.1109/ACCESS.2019.2928017

Article  MATH  Google Scholar 

Li J, Pang S, Xu F, Ji P, Zhou S, Shu M. Two-dimensional ECG-based cardiac arrhythmia classification using DSE-RESNET. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-18664-0.

Article  MATH  Google Scholar 

Sanamdikar S, Hamde S, Asutkar V. Analysis and classification of cardiac arrhythmia based on general sparsed neural network of ECG signals. SN Appl Sci. 2020. https://doi.org/10.1007/s42452-020-3058-8.

Article  Google Scholar 

Che C, Zhang P, Zhu M, Qu Y, Jin B. Constrained transformer network for ECG signal processing and arrhythmia classification. BMC Med Inf Decis Mak. 2021. https://doi.org/10.1186/s12911-021-01546-2.

Article  MATH  Google Scholar 

Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In: international conference on machine learning, 2019 pp. 6105–6114. PMLR

Puri D, Kachare P, Nalbalwar S. Metaheuristic optimized timefrequency features for enhancing Alzheimers disease identification. Biomed Signal Process Control. 2024;94: 106244. https://doi.org/10.1016/j.bspc.2024.106244.

Article  Google Scholar 

Puri D, Nalbalwar S, Nandgaonkar A, Gawande J, Wagh A. Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks. Biomed Signal Process Control. 2022;81: 104439. https://doi.org/10.1016/j.bspc.2022.104439.

Article  Google Scholar 

Puri D, Nalbalwar S, Ingle P. EEG-based systematic explainable Alzheimers disease and mild cognitive impairment identification using novel rational dyadic biorthogonal wavelet filter banks. Circuits, Syst Signal Process. 2023;43:1–31. https://doi.org/10.1007/s00034-023-02540-x.

Article  Google Scholar 

Puri D, Gawande J, Rajput J, Nalbalwar S. A novel optimal wavelet filter banks for automated diagnosis of Alzheimers disease and mild cognitive impairment using electroencephalogram signals. Decis Anal J. 2023;9: 100336. https://doi.org/10.1016/j.dajour.2023.100336.

Article  Google Scholar 

Kachare P, Sangle S, Puri D, Khubrani M, Alshourbaji I. Steadynet: spatiotemporal EEG analysis for dementia detection using convolutional neural network. Cogn Neurodyn. 2024;18:3195–208. https://doi.org/10.1007/s11571-024-10153-6.

Article  Google Scholar 

Shaik T, Tao X, Li L, Xie H, Velasquez J. A survey of multimodal information fusion for smart healthcare: mapping the journey from data to wisdom. Inf Fus. 2023;102: 102040. https://doi.org/10.1016/j.inffus.2023.102040.

Article  MATH  Google Scholar 

Niu S, Ma J, Bai L, Wang Z, Guo L, Yang X. EHR-KnowGen: knowledge-enhanced multimodal learning for disease diagnosis generation. Inf Fus. 2024;102: 102069. https://doi.org/10.1016/j.inffus.2023.102069.

Article  Google Scholar 

Gonzlez S, Yi A, Hsieh W-T, Chen W-C, Wang C-L, Wu VC-C, Tung Y-C. Multi-modal heart failure risk estimation based on short ECG and sampled long-term HRV. Inf Fus. 2024;107: 102337. https://doi.org/10.1016/j.inffus.2024.102337.

Article  Google Scholar 

Zhang X, Sun Y, Zhang Y, Chen F, Zhang S, He H, Song S, Tse G, Liu Y. Heart failure with midrange ejection fraction: prior left ventricular ejection fraction and prognosis. Front Cardiovasc Med. 2021;8: 697221. https://doi.org/10.3389/fcvm.2021.697221.

Article  MATH  Google Scholar 

Njoroge J, Teerlink J. Systolic time intervals in patients with heart failure: time to teach new dogs old tricks. Eur J Heart Fail. 2020. https://doi.org/10.1002/ejhf.1725.

Article  MATH  Google Scholar 

Ito S, Miranda W, Nkomo V, Connolly H, Pislaru S, Greason K, Pellikka P, Lewis B, Oh J. Reduced left ventricular ejection fraction in patients with aortic stenosis. J Am Coll Cardiol. 2018;71:1313–21. https://doi.org/10.1016/j.jacc.2018.01.045.

Article  Google Scholar 

Goel S, Liu J, Guo H, Barry W, Bell R, Murray B, Lynch J, Bastick P, Chantrill L, Kiely B, Abdi E, Rutovitz J, Asghari R, Sullivan A, Harrison M, Kohonen-Corish M, Beith J. Decline in left ventricular ejection fraction following anthracyclines predicts trastuzumab cardiotoxicity. JACC: Heart Fail. 2019. https://doi.org/10.1016/j.jchf.2019.04.014.

Article  Google Scholar 

Qiu L, Zhang M, Zhu W, Wang L. A lightweight U-net for ECG denoising using knowledge distillation. Physiol Meas. 2022. https://doi.org/10.1088/1361-6579/ac96cd.

Article  MATH  Google Scholar 

Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. 2019. arXiv:1810.04805

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.

Article  MATH  Google Scholar 

Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J, Krueger G, Sutskever I. Learning transferable visual models from natural language supervision. 2021. arxiv:2103.00020

Li LH, Yatskar M, Yin D, Hsieh C-J, Chang K-W. VisualBERT: a simple and performant baseline for vision and language. 2019. arxiv:1908.03557

Kim W, Son B, Kim I. ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. 2021. arxiv:2102.03334

Tan H, Bansal M. LXMERT: learning cross-modality encoder representations from transformers. 2019. arxiv:1908.07490

Fu L, Weng Z, Zhang J, Xie H, Cao Y. Mmbert: a unified framework for biomedical named entity recognition. Med Biol Eng Comput. 2023. https://doi.org/10.1007/s11517-023-02934-8.

Article  MATH  Google Scholar 

Comments (0)

No login
gif