Ponikowski P, Anker S, Khalid F, Cowie M, Force T, Hu S, Jaarsma T, Krum H, Rastogi V, Rohde L, Samal U, Shimokawa H, Siswanto B, Sliwa K, Filippatos G. Heart failure: preventing disease and death worldwide. ESC Heart Fail. 2014. https://doi.org/10.1002/ehf2.12005.
Cardiovascular Health TWC, China D. Summary of the 2021 report on cardiovascular health and diseases in china. Prev Treat Cardiovasc Cerebrovasc Dis. 2022;22(04):20–3640.
Seferovi P, Jankowska E, Coats A, Maggioni A, Lopatin Y, Milinkovi I, Polovina M, Lainak M, Timmis A, Huculeci R, Vardas P, Berger R, Jahangirov T, Kurlianskaya A, Troisfontaines P, Droogne W, Dizdarevic-Hudic L, Tokmakova M, Glavas D, Voronkov L. The heart failure association atlas: rationale, objectives, and methods. Eur J Heart Fail. 2020. https://doi.org/10.1002/ejhf.1768.
Heidenreich P, Bozkurt B, Aguilar D, Allen L, Byun J, Colvin M, Deswal A, Drazner M, Dunlay S, Evers L, Fang J, Fedson S, Fonarow G, Hayek S, Hernandez A, Khazanie P, Kittleson M, Lee C, Link M, Yancy C. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;2022:145. https://doi.org/10.1161/CIR.0000000000001063.
Palermi S, Bragazzi N, ular D, Ardig L, Padulo J. Human movement (ISSN 1899-1955) how chest press-based exercises can alleviate the burden of cardiovascular diseases 2022;23(4). Human Mov. 2022. https://doi.org/10.5114/hm.2021.106911.
Kannel W, D’Agostino R, Silbershatz H, Belanger A, Wilson P, Levy D. Profile for estimating risk of heart failure. Arch Internal Med. 1999;159:1197–204. https://doi.org/10.1001/archinte.159.11.1197.
Butler J, Kalogeropoulos A, Georgiopoulou V, Belue R, Rodondi N, Garca M, Bauer D, Satterfield S, Smith A, Vaccarino V, Newman A, Harris T, Wilson P, Kritchevsky S. Incident heart failure prediction in the elderly the health ABC heart failure score. Circ Heart Fail. 2008;1:125–33. https://doi.org/10.1161/CIRCHEARTFAILURE.108.768457.
Agarwal S, Chambless L, Ballantyne C, Astor B, Bertoni A, Chang P, Folsom A, He M, Hoogeveen R, Ni H, Quibrera P, Rosamond W, Russell S, Shahar E, Heiss G. Prediction of incident heart failure in general practice the atherosclerosis risk in communities (ARIC) study. Circ Heart Fail. 2012;5:422–9. https://doi.org/10.1161/CIRCHEARTFAILURE.111.964841.
Butler L, akbilgic o, Karabayir I, Chang P, Kitzman D, Alonso A, Chen L, Soliman EZ,. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure. Digital Health: Doi; 2021. https://doi.org/10.1093/ehjdh/ztab080.
Gonzlez S, Hsieh W-T, Burba D, Chen T, Wang C-L, Wu VC-C, Tung Y-C. Interpretable estimation of the risk of heart failure hospitalization from a 30-second electrocardiogram. https://doi.org/10.48550/arXiv.2211.00819
Lu W, Jiang J, Ma L, Chen H, Wu H, Gong M, Jiang X, Fan M. An arrhythmia classification algorithm using C-LSTM in physiological parameters monitoring system under internet of health things environment. J Ambient Intell Humanized Comput. 2021. https://doi.org/10.1007/s12652-021-03456-7.
Huang J, Chen B, Yao B, He W. ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access. 2019;7:92871–92880. https://doi.org/10.1109/ACCESS.2019.2928017
Li J, Pang S, Xu F, Ji P, Zhou S, Shu M. Two-dimensional ECG-based cardiac arrhythmia classification using DSE-RESNET. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-18664-0.
Sanamdikar S, Hamde S, Asutkar V. Analysis and classification of cardiac arrhythmia based on general sparsed neural network of ECG signals. SN Appl Sci. 2020. https://doi.org/10.1007/s42452-020-3058-8.
Che C, Zhang P, Zhu M, Qu Y, Jin B. Constrained transformer network for ECG signal processing and arrhythmia classification. BMC Med Inf Decis Mak. 2021. https://doi.org/10.1186/s12911-021-01546-2.
Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In: international conference on machine learning, 2019 pp. 6105–6114. PMLR
Puri D, Kachare P, Nalbalwar S. Metaheuristic optimized timefrequency features for enhancing Alzheimers disease identification. Biomed Signal Process Control. 2024;94: 106244. https://doi.org/10.1016/j.bspc.2024.106244.
Puri D, Nalbalwar S, Nandgaonkar A, Gawande J, Wagh A. Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks. Biomed Signal Process Control. 2022;81: 104439. https://doi.org/10.1016/j.bspc.2022.104439.
Puri D, Nalbalwar S, Ingle P. EEG-based systematic explainable Alzheimers disease and mild cognitive impairment identification using novel rational dyadic biorthogonal wavelet filter banks. Circuits, Syst Signal Process. 2023;43:1–31. https://doi.org/10.1007/s00034-023-02540-x.
Puri D, Gawande J, Rajput J, Nalbalwar S. A novel optimal wavelet filter banks for automated diagnosis of Alzheimers disease and mild cognitive impairment using electroencephalogram signals. Decis Anal J. 2023;9: 100336. https://doi.org/10.1016/j.dajour.2023.100336.
Kachare P, Sangle S, Puri D, Khubrani M, Alshourbaji I. Steadynet: spatiotemporal EEG analysis for dementia detection using convolutional neural network. Cogn Neurodyn. 2024;18:3195–208. https://doi.org/10.1007/s11571-024-10153-6.
Shaik T, Tao X, Li L, Xie H, Velasquez J. A survey of multimodal information fusion for smart healthcare: mapping the journey from data to wisdom. Inf Fus. 2023;102: 102040. https://doi.org/10.1016/j.inffus.2023.102040.
Niu S, Ma J, Bai L, Wang Z, Guo L, Yang X. EHR-KnowGen: knowledge-enhanced multimodal learning for disease diagnosis generation. Inf Fus. 2024;102: 102069. https://doi.org/10.1016/j.inffus.2023.102069.
Gonzlez S, Yi A, Hsieh W-T, Chen W-C, Wang C-L, Wu VC-C, Tung Y-C. Multi-modal heart failure risk estimation based on short ECG and sampled long-term HRV. Inf Fus. 2024;107: 102337. https://doi.org/10.1016/j.inffus.2024.102337.
Zhang X, Sun Y, Zhang Y, Chen F, Zhang S, He H, Song S, Tse G, Liu Y. Heart failure with midrange ejection fraction: prior left ventricular ejection fraction and prognosis. Front Cardiovasc Med. 2021;8: 697221. https://doi.org/10.3389/fcvm.2021.697221.
Njoroge J, Teerlink J. Systolic time intervals in patients with heart failure: time to teach new dogs old tricks. Eur J Heart Fail. 2020. https://doi.org/10.1002/ejhf.1725.
Ito S, Miranda W, Nkomo V, Connolly H, Pislaru S, Greason K, Pellikka P, Lewis B, Oh J. Reduced left ventricular ejection fraction in patients with aortic stenosis. J Am Coll Cardiol. 2018;71:1313–21. https://doi.org/10.1016/j.jacc.2018.01.045.
Goel S, Liu J, Guo H, Barry W, Bell R, Murray B, Lynch J, Bastick P, Chantrill L, Kiely B, Abdi E, Rutovitz J, Asghari R, Sullivan A, Harrison M, Kohonen-Corish M, Beith J. Decline in left ventricular ejection fraction following anthracyclines predicts trastuzumab cardiotoxicity. JACC: Heart Fail. 2019. https://doi.org/10.1016/j.jchf.2019.04.014.
Qiu L, Zhang M, Zhu W, Wang L. A lightweight U-net for ECG denoising using knowledge distillation. Physiol Meas. 2022. https://doi.org/10.1088/1361-6579/ac96cd.
Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. 2019. arXiv:1810.04805
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.
Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J, Krueger G, Sutskever I. Learning transferable visual models from natural language supervision. 2021. arxiv:2103.00020
Li LH, Yatskar M, Yin D, Hsieh C-J, Chang K-W. VisualBERT: a simple and performant baseline for vision and language. 2019. arxiv:1908.03557
Kim W, Son B, Kim I. ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. 2021. arxiv:2102.03334
Tan H, Bansal M. LXMERT: learning cross-modality encoder representations from transformers. 2019. arxiv:1908.07490
Fu L, Weng Z, Zhang J, Xie H, Cao Y. Mmbert: a unified framework for biomedical named entity recognition. Med Biol Eng Comput. 2023. https://doi.org/10.1007/s11517-023-02934-8.
Comments (0)