Real-time monitoring and quantitative analysis of 3D tumor spheroids using portable cellular imaging system

Harimoto T, Deb D, Danino T. A rapid screening platform to coculture bacteria within tumor spheroids. Nat Protoc. 2022;17(10):2216–39. https://doi.org/10.1038/s41596-022-00695-0.

Article  MATH  Google Scholar 

Joo JH, Won M, Park SY, Park K, Shin D-S, Kim JS, Lee MH. A dicyanocoumarin-fused quinolinium based probe for NAD (P) H and its use for detecting Glycolysis and hypoxia in living cells and tumor spheroids. Sens Actuators B. 2020;320:128360. https://doi.org/10.1016/j.snb.2017.04.073.

Article  MATH  Google Scholar 

Kim H, Koo K-M, Kim C-D, Byun MJ, Park CG, Son H, Kim H-R, Kim T-H. Simple and cost-effective generation of 3D cell sheets and spheroids using curvature-controlled paraffin wax substrates. Nano Converg. 2024;11(1):44. https://doi.org/10.1186/s40580-024-00451-4.

Article  MATH  Google Scholar 

Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano Converg. 2023;10(1):48. https://doi.org/10.1186/s40580-023-00398-y.

Article  Google Scholar 

Shortt RL, Wang Y, Hummon AB, Jones LM. Development of Spheroid-FPOP: an in-cell protein footprinting method for 3D tumor spheroids. J Am Soc Mass Spectrom. 2023;34(3):417–25. https://doi.org/10.1021/jasms.2c00307.

Article  Google Scholar 

Park B, Oh D, Kim J, Kim C. Functional photoacoustic imaging: from nano-and micro-to macro-scale. Nano Converg. 2023;10(1):29. https://doi.org/10.1186/s40580-023-00377-3.

Article  MATH  Google Scholar 

Okuyama K, Kaida A, Hayashi Y, Hayashi Y, Harada K, Miura M. KPU-300, a novel benzophenone–diketopiperazine–type anti-microtubule agent with a 2-pyridyl structure, is a potent radiosensitizer that synchronizes the cell cycle in early M phase. PLoS ONE. 2015;10(12):e0145995. https://doi.org/10.1371/journal.pone.0145995.

Article  Google Scholar 

Osaki T, Kageyama T, Shimazu Y, Mysnikova D, Takahashi S, Takimoto S, Fukuda J. Flatbed Epi relief-contrast cellular monitoring system for stable cell culture. Sci Rep. 2017;7(1):1897. https://doi.org/10.1038/s41598-017-02001-x.

Article  Google Scholar 

Pinto B, Henriques AC, Silva PM, Bousbaa H. Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics. 2020;12(12):1186. https://doi.org/10.3390/pharmaceutics12121186.

Article  Google Scholar 

Kim D-H, Paek S-H, Choi D-Y, Lee M-K, Park J-N, Cho H-M, Paek S-H. Real-time monitoring of biomarkers in serum for early diagnosis of target disease. Biochip J. 2020;14:2–17. https://doi.org/10.1007/s13206-020-1400-0.

Article  MATH  Google Scholar 

Sirenko O, Mitlo T, Hesley J, Luke S, Owens W, Cromwell EF. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol. 2015;13(7):402–14. https://doi.org/10.1089/adt.2015.655.

Article  Google Scholar 

Usaj MM, Styles EB, Verster AJ, Friesen H, Boone C, Andrews BJ. High-content screening for quantitative cell biology. Trends Cell Biol. 2016;26(8):598–611. https://doi.org/10.1016/j.tcb.2016.03.010.

Article  Google Scholar 

Yang K, Wu J, Santos S, Liu Y, Zhu L, Lin F. Recent development of portable imaging platforms for cell-based assays. Biosens Bioelectron. 2019;124:150–60. https://doi.org/10.1016/j.bios.2018.10.030.

Article  MATH  Google Scholar 

Zeng Y, Jin K, Li J, Liu J, Li J, Li T, Li S. A low cost and portable smartphone microscopic device for cell counting. Sens Actuators A Phys. 2018;274:57–63. https://doi.org/10.1016/j.sna.2018.03.009.

Article  MATH  Google Scholar 

Su K, Pan Y, Wan Z, Zhong L, Fang J, Zou Q, Li H, Wang P. Smartphone-based portable biosensing system using cell viability biosensor for Okadaic acid detection. Sens Actuators B. 2017;251:134–43. https://doi.org/10.1016/j.snb.2017.04.073.

Article  Google Scholar 

Calabretta MM, Gregucci D, Guardigli M, Michelini E. Low-cost and sustainable smartphone-based tissue-on-chip device for bioluminescence biosensing. Biosens Bioelectron. 2024;261:116454. https://doi.org/10.1016/j.bios.2023.116454.

Article  Google Scholar 

Dolega ME, Allier C, Kesavan SV, Gerbaud S, Kermarrec F, Marcoux P, Dinten J-M, Gidrol X, Picollet-D’Hahan N. Label-free analysis of prostate acini-like 3D structures by lensfree imaging. Biosens Bioelectron. 2013;49:176–83. https://doi.org/10.1016/j.bios.2013.05.010.

Article  Google Scholar 

Luo Z, Yurt A, Stahl R, Carlon MS, Ramalho AS, Vermeulen F, Lambrechts A, Braeken D, Lagae L. Fast compressive lens-free tomography for 3D biological cell culture imaging. Opt Express. 2020;28(18):26935–52. https://doi.org/10.1364/OE.393492.

Article  Google Scholar 

Rodríguez-Pena A, Uranga-Solchaga J, Ortiz-de-Solorzano C, Cortés-Domínguez I. Spheroscope: a custom-made miniaturized microscope for tracking tumour spheroids in microfluidic devices. Sci Rep. 2020;10(1):2779. https://doi.org/10.1038/s41598-020-59780-0.

Article  Google Scholar 

Kaya M, Stein F, Rouwkema J, Khalil IS, Misra S. Serial imaging of micro-agents and cancer cell spheroids in a microfluidic channel using multicolor fluorescence microscopy. PLoS ONE. 2021;16(6):e0253222. https://doi.org/10.1371/journal.pone.0253222.

Article  Google Scholar 

Kim NY, Lee HY, Choi YY, Mo SJ, Jeon S, Ha JH, Park SD, Shim J-J, Lee J, Chung BG. Effect of gut microbiota-derived metabolites and extracellular vesicles on neurodegenerative disease in a gut-brain axis chip. Nano Convergence. 2024;11(1):7. https://doi.org/10.1186/s40580-024-00413-w.

Article  MATH  Google Scholar 

Azizipour N, Avazpour R, Weber MH, Sawan M, Ajji A, Rosenzweig DH. Uniform tumor spheroids on surface-optimized microfluidic biochips for reproducible drug screening and personalized medicine. Micromachines. 2022;13(4):587. https://doi.org/10.3390/mi13040587.

Article  Google Scholar 

Chen W, Wong C, Vosburgh E, Levine AJ, Foran DJ, Xu EY. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately. JoVE J. Vis. Exp. 2014;e51639. https://doi.org/10.3791/51639.

Choi JW, Seo WH, Lee YS, Kim SY, Kim BS, Lee KG, Lee SJ, Chung BG. Development of an IoT-integrated multiplexed digital PCR system for quantitative detection of infectious diseases. Lab Chip. 2022;22(20):3933–41. https://doi.org/10.1038/s41378-022-00414-0.

Article  MATH  Google Scholar 

Lee JM, Choi JW, Ahrberg CD, Choi HW, Ha JH, Mun SG, Mo SJ, Chung BG. Generation of tumor spheroids using a droplet-based microfluidic device for photothermal therapy. Microsyst Nanoeng. 2020;6(1):52. https://doi.org/10.1038/s41378-020-00167-x.

Article  MATH  Google Scholar 

Sart S, R F-X Tomasi G, Amselem, Baroud CN. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nat Commun. 2017;8(1):469. https://doi.org/10.1038/s41467-017-00475-x.

Article  MATH  Google Scholar 

Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15. https://doi.org/10.1016/j.jbiotec.2010.01.012.

Article  Google Scholar 

Nath S, Devi GR. Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013.

Article  MATH  Google Scholar 

Musiałek MW, Rybaczek D. Hydroxyurea—the good, the bad and the ugly. Genes. 2021;12(7):1096. https://doi.org/10.3390/genes12071096.

Article  MATH  Google Scholar 

Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, van Tellingen O, Janssen J, Huijgens P, Zwart W, Neefjes J. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat Commun. 2013;4(1):1908. https://doi.org/10.1038/ncomms2921.

Article  Google Scholar 

Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and Daunorubicin. Biochem Pharmacol. 1999;57(7):727–41. https://doi.org/10.1016/S0006-2952(98)00307-4.

Article  MATH  Google Scholar 

Wu CC, Li TK, Farh L, Lin LY, Lin TS, Yu YJ, Yen TJ, Chiang CW, Chan NL. Structural basis of type II topoisomerase Inhibition by the anticancer drug etoposide. Science. 2011;333(6041):459–62. https://doi.org/10.1126/science.1204117.

Article  Google Scholar 

Lee JM, Park DY, Yang L, Kim E-J, Ahrberg CD, Lee K-B, Chung BG. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep. 2018;8(1):17145. https://doi.org/10.1038/s41598-018-35216-7.

Article  Google Scholar 

Chen G, Liu W, Yan B. Breast cancer MCF-7 cell spheroid culture for drug discovery and development. J cancer Ther. 2022;13(3):117. https://doi.org/10.4236/jct.2022.133011.

Article  MATH  Google Scholar 

Pulze L, Congiu T, Brevini TA, Grimaldi A, Tettamanti G, D’antona P, Baranzini N, Acquati F, Ferraro F, de Eguileor M. MCF7 spheroid development: new insight about Spatio/temporal arrangements of TNTs, amyloid fibrils, cell connections, and cellular bridges. Int J Mol Sci. 2020;21(15):5400. https://doi.org/10.3390/ijms21155400.

Article  Google Scholar 

Ralph ACL, I C Valadão EC, Cardoso VR, Martins LMS, Ol

Comments (0)

No login
gif