Harimoto T, Deb D, Danino T. A rapid screening platform to coculture bacteria within tumor spheroids. Nat Protoc. 2022;17(10):2216–39. https://doi.org/10.1038/s41596-022-00695-0.
Joo JH, Won M, Park SY, Park K, Shin D-S, Kim JS, Lee MH. A dicyanocoumarin-fused quinolinium based probe for NAD (P) H and its use for detecting Glycolysis and hypoxia in living cells and tumor spheroids. Sens Actuators B. 2020;320:128360. https://doi.org/10.1016/j.snb.2017.04.073.
Kim H, Koo K-M, Kim C-D, Byun MJ, Park CG, Son H, Kim H-R, Kim T-H. Simple and cost-effective generation of 3D cell sheets and spheroids using curvature-controlled paraffin wax substrates. Nano Converg. 2024;11(1):44. https://doi.org/10.1186/s40580-024-00451-4.
Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano Converg. 2023;10(1):48. https://doi.org/10.1186/s40580-023-00398-y.
Shortt RL, Wang Y, Hummon AB, Jones LM. Development of Spheroid-FPOP: an in-cell protein footprinting method for 3D tumor spheroids. J Am Soc Mass Spectrom. 2023;34(3):417–25. https://doi.org/10.1021/jasms.2c00307.
Park B, Oh D, Kim J, Kim C. Functional photoacoustic imaging: from nano-and micro-to macro-scale. Nano Converg. 2023;10(1):29. https://doi.org/10.1186/s40580-023-00377-3.
Okuyama K, Kaida A, Hayashi Y, Hayashi Y, Harada K, Miura M. KPU-300, a novel benzophenone–diketopiperazine–type anti-microtubule agent with a 2-pyridyl structure, is a potent radiosensitizer that synchronizes the cell cycle in early M phase. PLoS ONE. 2015;10(12):e0145995. https://doi.org/10.1371/journal.pone.0145995.
Osaki T, Kageyama T, Shimazu Y, Mysnikova D, Takahashi S, Takimoto S, Fukuda J. Flatbed Epi relief-contrast cellular monitoring system for stable cell culture. Sci Rep. 2017;7(1):1897. https://doi.org/10.1038/s41598-017-02001-x.
Pinto B, Henriques AC, Silva PM, Bousbaa H. Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics. 2020;12(12):1186. https://doi.org/10.3390/pharmaceutics12121186.
Kim D-H, Paek S-H, Choi D-Y, Lee M-K, Park J-N, Cho H-M, Paek S-H. Real-time monitoring of biomarkers in serum for early diagnosis of target disease. Biochip J. 2020;14:2–17. https://doi.org/10.1007/s13206-020-1400-0.
Sirenko O, Mitlo T, Hesley J, Luke S, Owens W, Cromwell EF. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol. 2015;13(7):402–14. https://doi.org/10.1089/adt.2015.655.
Usaj MM, Styles EB, Verster AJ, Friesen H, Boone C, Andrews BJ. High-content screening for quantitative cell biology. Trends Cell Biol. 2016;26(8):598–611. https://doi.org/10.1016/j.tcb.2016.03.010.
Yang K, Wu J, Santos S, Liu Y, Zhu L, Lin F. Recent development of portable imaging platforms for cell-based assays. Biosens Bioelectron. 2019;124:150–60. https://doi.org/10.1016/j.bios.2018.10.030.
Zeng Y, Jin K, Li J, Liu J, Li J, Li T, Li S. A low cost and portable smartphone microscopic device for cell counting. Sens Actuators A Phys. 2018;274:57–63. https://doi.org/10.1016/j.sna.2018.03.009.
Su K, Pan Y, Wan Z, Zhong L, Fang J, Zou Q, Li H, Wang P. Smartphone-based portable biosensing system using cell viability biosensor for Okadaic acid detection. Sens Actuators B. 2017;251:134–43. https://doi.org/10.1016/j.snb.2017.04.073.
Calabretta MM, Gregucci D, Guardigli M, Michelini E. Low-cost and sustainable smartphone-based tissue-on-chip device for bioluminescence biosensing. Biosens Bioelectron. 2024;261:116454. https://doi.org/10.1016/j.bios.2023.116454.
Dolega ME, Allier C, Kesavan SV, Gerbaud S, Kermarrec F, Marcoux P, Dinten J-M, Gidrol X, Picollet-D’Hahan N. Label-free analysis of prostate acini-like 3D structures by lensfree imaging. Biosens Bioelectron. 2013;49:176–83. https://doi.org/10.1016/j.bios.2013.05.010.
Luo Z, Yurt A, Stahl R, Carlon MS, Ramalho AS, Vermeulen F, Lambrechts A, Braeken D, Lagae L. Fast compressive lens-free tomography for 3D biological cell culture imaging. Opt Express. 2020;28(18):26935–52. https://doi.org/10.1364/OE.393492.
Rodríguez-Pena A, Uranga-Solchaga J, Ortiz-de-Solorzano C, Cortés-Domínguez I. Spheroscope: a custom-made miniaturized microscope for tracking tumour spheroids in microfluidic devices. Sci Rep. 2020;10(1):2779. https://doi.org/10.1038/s41598-020-59780-0.
Kaya M, Stein F, Rouwkema J, Khalil IS, Misra S. Serial imaging of micro-agents and cancer cell spheroids in a microfluidic channel using multicolor fluorescence microscopy. PLoS ONE. 2021;16(6):e0253222. https://doi.org/10.1371/journal.pone.0253222.
Kim NY, Lee HY, Choi YY, Mo SJ, Jeon S, Ha JH, Park SD, Shim J-J, Lee J, Chung BG. Effect of gut microbiota-derived metabolites and extracellular vesicles on neurodegenerative disease in a gut-brain axis chip. Nano Convergence. 2024;11(1):7. https://doi.org/10.1186/s40580-024-00413-w.
Azizipour N, Avazpour R, Weber MH, Sawan M, Ajji A, Rosenzweig DH. Uniform tumor spheroids on surface-optimized microfluidic biochips for reproducible drug screening and personalized medicine. Micromachines. 2022;13(4):587. https://doi.org/10.3390/mi13040587.
Chen W, Wong C, Vosburgh E, Levine AJ, Foran DJ, Xu EY. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately. JoVE J. Vis. Exp. 2014;e51639. https://doi.org/10.3791/51639.
Choi JW, Seo WH, Lee YS, Kim SY, Kim BS, Lee KG, Lee SJ, Chung BG. Development of an IoT-integrated multiplexed digital PCR system for quantitative detection of infectious diseases. Lab Chip. 2022;22(20):3933–41. https://doi.org/10.1038/s41378-022-00414-0.
Lee JM, Choi JW, Ahrberg CD, Choi HW, Ha JH, Mun SG, Mo SJ, Chung BG. Generation of tumor spheroids using a droplet-based microfluidic device for photothermal therapy. Microsyst Nanoeng. 2020;6(1):52. https://doi.org/10.1038/s41378-020-00167-x.
Sart S, R F-X Tomasi G, Amselem, Baroud CN. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nat Commun. 2017;8(1):469. https://doi.org/10.1038/s41467-017-00475-x.
Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15. https://doi.org/10.1016/j.jbiotec.2010.01.012.
Nath S, Devi GR. Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013.
Musiałek MW, Rybaczek D. Hydroxyurea—the good, the bad and the ugly. Genes. 2021;12(7):1096. https://doi.org/10.3390/genes12071096.
Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, van Tellingen O, Janssen J, Huijgens P, Zwart W, Neefjes J. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat Commun. 2013;4(1):1908. https://doi.org/10.1038/ncomms2921.
Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and Daunorubicin. Biochem Pharmacol. 1999;57(7):727–41. https://doi.org/10.1016/S0006-2952(98)00307-4.
Wu CC, Li TK, Farh L, Lin LY, Lin TS, Yu YJ, Yen TJ, Chiang CW, Chan NL. Structural basis of type II topoisomerase Inhibition by the anticancer drug etoposide. Science. 2011;333(6041):459–62. https://doi.org/10.1126/science.1204117.
Lee JM, Park DY, Yang L, Kim E-J, Ahrberg CD, Lee K-B, Chung BG. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep. 2018;8(1):17145. https://doi.org/10.1038/s41598-018-35216-7.
Chen G, Liu W, Yan B. Breast cancer MCF-7 cell spheroid culture for drug discovery and development. J cancer Ther. 2022;13(3):117. https://doi.org/10.4236/jct.2022.133011.
Pulze L, Congiu T, Brevini TA, Grimaldi A, Tettamanti G, D’antona P, Baranzini N, Acquati F, Ferraro F, de Eguileor M. MCF7 spheroid development: new insight about Spatio/temporal arrangements of TNTs, amyloid fibrils, cell connections, and cellular bridges. Int J Mol Sci. 2020;21(15):5400. https://doi.org/10.3390/ijms21155400.
Ralph ACL, I C Valadão EC, Cardoso VR, Martins LMS, Ol
Comments (0)