Evaluation of a silicone-based flexible dry electrode for measuring human bioelectrical signals

Singh YN, Singh SK, Ray AK. Bioelectrical signals as emerging biometrics: issues and challenges. Int Sch Res Notices. 2012;2012(1): 712032.

MATH  Google Scholar 

Binnie C, Prior P. Electroencephalography. J Neurol Neurosurg Psychiatry. 1994;57(11):1308–19.

Google Scholar 

Mills KR. The basics of electromyography. J Neurol Neurosurg Psychiatry. 2005;76(suppl 2):ii32–5.

MathSciNet  MATH  Google Scholar 

Marg E. Development of electro-oculography: standing potential of the eye in registration of eye movement. AMA Arch Ophthalmol. 1951;45(2):169–85.

MATH  Google Scholar 

Mirvis DM, Goldberger AL. Electrocardiography. Heart Dis. 2001;1:82–128.

Google Scholar 

Levin M, Stevenson CG. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu Rev Biomed Eng. 2012;14(1):295–323.

MATH  Google Scholar 

Serhani MA, El Kassabi HT, Ismail H, Nujum NA. ECG monitoring systems: review architecture, processes, and key challenges. Sensors. 2020;20(6):1796.

Google Scholar 

Al-Ayyad M, Owida HA, De Fazio R, Al-Naami B, Visconti P. Electromyography monitoring systems in rehabilitation: a review of clinical applications, wearable devices and signal acquisition methodologies. Electronics. 2023;12(7):1520.

Google Scholar 

Palumbo A, Vizza P, Calabrese B, Ielpo N. Biopotential signal monitoring systems in rehabilitation: a review. Sensors. 2021;21(21):7172.

MATH  Google Scholar 

Birnbaum Y, Wilson JM, Fiol M, de Luna AB, Eskola M, Nikus K. ECG diagnosis and classification of acute coronary syndromes. Ann Noninvasive Electrocardiol. 2014;19(1):4–14.

Google Scholar 

Latifoğlu F, Esas MY, Demirci E. Diagnosis of attention-deficit hyperactivity disorder using EOG signals: a new approach. Biomed Eng Biomed Te. 2020;65(2):149–64.

Google Scholar 

Raja JM, Elsakr C, Roman S, Cave B, Pour-Ghaz I, Nanda A, et al. Apple watch, wearables, and heart rhythm: where do we stand? Ann Transl Med. 2019;7(17):417.

Google Scholar 

Enamamu T, Otebolaku A, Marchang J, Dany J. Continuous m-Health data authentication using wavelet decomposition for feature extraction. Sensors. 2020;20(19):5690.

Google Scholar 

Casson AJ. Wearable EEG and beyond. Biomed Eng Lett. 2019;9(1):53–71.

MATH  Google Scholar 

Kumari P, Mathew L, Syal P. Increasing trend of wearables and multimodal interface for human activity monitoring: a review. Biosens Bioelectron. 2017;90:298–307.

Google Scholar 

Fu Y, Zhao J, Dong Y, Wang X. Dry electrodes for human bioelectrical signal monitoring. Sensors. 2020;20(13):3651.

MATH  Google Scholar 

Albulbul A. Evaluating major electrode types for idle biological signal measurements for modern medical technology. Bioeng. 2016;3(3):20.

Google Scholar 

Searle A, Kirkup L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol Meas. 2000;21(2):271.

MATH  Google Scholar 

Li G, Wang S, Duan YY. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens Actuators B Chem. 2018;277:250–60.

Google Scholar 

Niu X, Gao X, Liu Y, Liu H. Surface bioelectric dry Electrodes: a review. Measurement. 2021;183: 109774.

MATH  Google Scholar 

Kaappa ES, Joutsen A, Cömert A, Vanhala J. The electrical impedance measurements of dry electrode materials for the ECG measuring after repeated washing. Res J Text Appar. 2017;21(1):59–71.

Google Scholar 

Cattarello P, Merletti R. Characterization of dry and wet Electrode-Skin interfaces on different skin treatments for HDsEMG. 2016 IEEE international symposium on medical measurements and applications (MeMeA): IEEE; 2016. p. 1–6.

Baek J-Y, An J-H, Choi J-M, Park K-S, Lee S-H. Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sens Actuators A Phys. 2008;143(2):423–9.

MATH  Google Scholar 

Lee J-W, Yun K-S. ECG monitoring garment using conductive carbon paste for reduced motion artifacts. Polymers. 2017;9(9):439.

MATH  Google Scholar 

Liu B, Luo Z, Zhang W, Tu Q, Jin X. A simple method of fabricating graphene-polymer conductive films. Int Polym Process. 2018;33(1):135–8.

MATH  Google Scholar 

Reyes BA, Posada-Quintero HF, Bales JR, Clement AL, Pins GD, Swiston A, et al. Novel electrodes for underwater ECG monitoring. IEEE Trans Biomed Eng. 2014;61(6):1863–76.

Google Scholar 

Lin C-T, Liao L-D, Liu Y-H, Wang I-J, Lin B-S, Chang J-Y. Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans Biomed Eng. 2010;58(5):1200–7.

MATH  Google Scholar 

Norton JJ, Lee DS, Lee JW, Lee W, Kwon O, Won P, et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc Natl Acad Sci. 2015;112(13):3920–5.

MATH  Google Scholar 

Lim K-S, Kang H, Song J-M, Oh Y-R, Moon Y-J, Kim M-K. Manufacture method for conductive silicon electrodes and electride devive. KR Patent No. 102,409,205. South Korea. 2022.

Lim K-S, Kang H, Song J-M, Oh Y-R, Moon Y-J, Kim M-K. Conductive silicon devices and manufaturing methods for measuring biological signals. KR Patent No. 102,364,287. South Korea. 2022.

Choi J, Kaongoen N, Choi H, Kim M, Kim BH, Jo S. Decoding auditory-evoked response in affective states using wearable around-ear EEG system. Biomed Phys Eng Express. 2023;9(5): 055029.

MATH  Google Scholar 

Li G, Chung W-Y. A context-aware EEG headset system for early detection of driver drowsiness. Sensors. 2015;15(8):20873–93.

Google Scholar 

Zheng D, Ramos-Sebastian A, Jung WS, Kim SH. Fabrication and preliminary evaluation of alginate hydrogel-based magnetic springs with actively targeted heating and drug release mechanisms for cancer therapy. Compos B Eng. 2022;230: 109551.

Google Scholar 

Choi S-I, Hwang H-J. Effects of different re-referencing methods on spontaneously generated ear-EEG. Front Neurosci. 2019;13:908.

MATH  Google Scholar 

Choi S-I, Han C-H, Choi G-Y, Shin J, Song KS, Im C-H, et al. On the feasibility of using an ear-EEG to develop an endogenous brain-computer interface. Sensors. 2018;18(9):2856.

MATH  Google Scholar 

Park S, Kim S-U, Choi S-I, Hwang H-J. Systematic investigation of optimal electrode positions and re-referencing strategies on ear biosignals. Int J Hum-Comput Interact. 2024;41(2):1323–42.

MATH  Google Scholar 

Chang W-D, Cha H-S, Kim K, Im C-H. Detection of eye blink artifacts from single prefrontal channel electroencephalogram. Comput Methods Programs Biomed. 2016;124:19–30.

MATH  Google Scholar 

Han C-H, Choi G-Y, Hwang H-J. Deep convolutional neural network based eye states classification using ear-EEG. Expert Syst Appl. 2022;192: 116443.

Google Scholar 

Zhu X, Zheng W-L, Lu B-L, Chen X, Chen S, Wang C. EOG-based drowsiness detection using convolutional neural networks. 2014 international joint conference on neural networks (IJCNN): IEEE; 2014. p. 128–34.

Toledo-Peral CL, Vega-Martínez G, Mercado-Gutiérrez JA, Rodríguez-Reyes G, Vera-Hernández A, Leija-Salas L, et al. Virtual/augmented reality for rehabilitation applications using electromyography as control/biofeedback: systematic literature review. Electronics. 2022;11(14):2271.

Google Scholar 

Comments (0)

No login
gif