Singh YN, Singh SK, Ray AK. Bioelectrical signals as emerging biometrics: issues and challenges. Int Sch Res Notices. 2012;2012(1): 712032.
Binnie C, Prior P. Electroencephalography. J Neurol Neurosurg Psychiatry. 1994;57(11):1308–19.
Mills KR. The basics of electromyography. J Neurol Neurosurg Psychiatry. 2005;76(suppl 2):ii32–5.
MathSciNet MATH Google Scholar
Marg E. Development of electro-oculography: standing potential of the eye in registration of eye movement. AMA Arch Ophthalmol. 1951;45(2):169–85.
Mirvis DM, Goldberger AL. Electrocardiography. Heart Dis. 2001;1:82–128.
Levin M, Stevenson CG. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu Rev Biomed Eng. 2012;14(1):295–323.
Serhani MA, El Kassabi HT, Ismail H, Nujum NA. ECG monitoring systems: review architecture, processes, and key challenges. Sensors. 2020;20(6):1796.
Al-Ayyad M, Owida HA, De Fazio R, Al-Naami B, Visconti P. Electromyography monitoring systems in rehabilitation: a review of clinical applications, wearable devices and signal acquisition methodologies. Electronics. 2023;12(7):1520.
Palumbo A, Vizza P, Calabrese B, Ielpo N. Biopotential signal monitoring systems in rehabilitation: a review. Sensors. 2021;21(21):7172.
Birnbaum Y, Wilson JM, Fiol M, de Luna AB, Eskola M, Nikus K. ECG diagnosis and classification of acute coronary syndromes. Ann Noninvasive Electrocardiol. 2014;19(1):4–14.
Latifoğlu F, Esas MY, Demirci E. Diagnosis of attention-deficit hyperactivity disorder using EOG signals: a new approach. Biomed Eng Biomed Te. 2020;65(2):149–64.
Raja JM, Elsakr C, Roman S, Cave B, Pour-Ghaz I, Nanda A, et al. Apple watch, wearables, and heart rhythm: where do we stand? Ann Transl Med. 2019;7(17):417.
Enamamu T, Otebolaku A, Marchang J, Dany J. Continuous m-Health data authentication using wavelet decomposition for feature extraction. Sensors. 2020;20(19):5690.
Casson AJ. Wearable EEG and beyond. Biomed Eng Lett. 2019;9(1):53–71.
Kumari P, Mathew L, Syal P. Increasing trend of wearables and multimodal interface for human activity monitoring: a review. Biosens Bioelectron. 2017;90:298–307.
Fu Y, Zhao J, Dong Y, Wang X. Dry electrodes for human bioelectrical signal monitoring. Sensors. 2020;20(13):3651.
Albulbul A. Evaluating major electrode types for idle biological signal measurements for modern medical technology. Bioeng. 2016;3(3):20.
Searle A, Kirkup L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol Meas. 2000;21(2):271.
Li G, Wang S, Duan YY. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens Actuators B Chem. 2018;277:250–60.
Niu X, Gao X, Liu Y, Liu H. Surface bioelectric dry Electrodes: a review. Measurement. 2021;183: 109774.
Kaappa ES, Joutsen A, Cömert A, Vanhala J. The electrical impedance measurements of dry electrode materials for the ECG measuring after repeated washing. Res J Text Appar. 2017;21(1):59–71.
Cattarello P, Merletti R. Characterization of dry and wet Electrode-Skin interfaces on different skin treatments for HDsEMG. 2016 IEEE international symposium on medical measurements and applications (MeMeA): IEEE; 2016. p. 1–6.
Baek J-Y, An J-H, Choi J-M, Park K-S, Lee S-H. Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sens Actuators A Phys. 2008;143(2):423–9.
Lee J-W, Yun K-S. ECG monitoring garment using conductive carbon paste for reduced motion artifacts. Polymers. 2017;9(9):439.
Liu B, Luo Z, Zhang W, Tu Q, Jin X. A simple method of fabricating graphene-polymer conductive films. Int Polym Process. 2018;33(1):135–8.
Reyes BA, Posada-Quintero HF, Bales JR, Clement AL, Pins GD, Swiston A, et al. Novel electrodes for underwater ECG monitoring. IEEE Trans Biomed Eng. 2014;61(6):1863–76.
Lin C-T, Liao L-D, Liu Y-H, Wang I-J, Lin B-S, Chang J-Y. Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans Biomed Eng. 2010;58(5):1200–7.
Norton JJ, Lee DS, Lee JW, Lee W, Kwon O, Won P, et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc Natl Acad Sci. 2015;112(13):3920–5.
Lim K-S, Kang H, Song J-M, Oh Y-R, Moon Y-J, Kim M-K. Manufacture method for conductive silicon electrodes and electride devive. KR Patent No. 102,409,205. South Korea. 2022.
Lim K-S, Kang H, Song J-M, Oh Y-R, Moon Y-J, Kim M-K. Conductive silicon devices and manufaturing methods for measuring biological signals. KR Patent No. 102,364,287. South Korea. 2022.
Choi J, Kaongoen N, Choi H, Kim M, Kim BH, Jo S. Decoding auditory-evoked response in affective states using wearable around-ear EEG system. Biomed Phys Eng Express. 2023;9(5): 055029.
Li G, Chung W-Y. A context-aware EEG headset system for early detection of driver drowsiness. Sensors. 2015;15(8):20873–93.
Zheng D, Ramos-Sebastian A, Jung WS, Kim SH. Fabrication and preliminary evaluation of alginate hydrogel-based magnetic springs with actively targeted heating and drug release mechanisms for cancer therapy. Compos B Eng. 2022;230: 109551.
Choi S-I, Hwang H-J. Effects of different re-referencing methods on spontaneously generated ear-EEG. Front Neurosci. 2019;13:908.
Choi S-I, Han C-H, Choi G-Y, Shin J, Song KS, Im C-H, et al. On the feasibility of using an ear-EEG to develop an endogenous brain-computer interface. Sensors. 2018;18(9):2856.
Park S, Kim S-U, Choi S-I, Hwang H-J. Systematic investigation of optimal electrode positions and re-referencing strategies on ear biosignals. Int J Hum-Comput Interact. 2024;41(2):1323–42.
Chang W-D, Cha H-S, Kim K, Im C-H. Detection of eye blink artifacts from single prefrontal channel electroencephalogram. Comput Methods Programs Biomed. 2016;124:19–30.
Han C-H, Choi G-Y, Hwang H-J. Deep convolutional neural network based eye states classification using ear-EEG. Expert Syst Appl. 2022;192: 116443.
Zhu X, Zheng W-L, Lu B-L, Chen X, Chen S, Wang C. EOG-based drowsiness detection using convolutional neural networks. 2014 international joint conference on neural networks (IJCNN): IEEE; 2014. p. 128–34.
Toledo-Peral CL, Vega-Martínez G, Mercado-Gutiérrez JA, Rodríguez-Reyes G, Vera-Hernández A, Leija-Salas L, et al. Virtual/augmented reality for rehabilitation applications using electromyography as control/biofeedback: systematic literature review. Electronics. 2022;11(14):2271.
Comments (0)