POTENTIOMETRIC SENSOR FOR THE DETERMINATION OF ZYPROSIDONE BASED ON ITS ION ASSOCIATE WITH EOSIN

Baldassano, C.F., Ballas, C., Datto, S.M., Kim, D., Littman, L., O'Reardon, J., Rynn, M.A. (2003). Ziprasidone-associated mania: a case series and review of the mechanism. Bipolar Disord., 5(1), 72–75. doi:10.1034/j.1399-5618.2003.02258.x.

Farde, L., Wiesel, F.A., Halldin, C., Sedvall, G. (1988). Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch. Gen. Psychiatry., 45, 71–76. doi: 10.1001/archpsyc.1988.01800250087012.

Mamo, D., Kapur, S., Shammi, C.M., Papatheodorou, G., Mann, S., Therrien, F., Remington, G. (2004). A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am. J. Psychiatry., 161, 818–825. doi: 10.1176/appi.ajp.161.5.818.

Baumann, P., Hiemke, C., Ulrich, S., Eckermann, G., Gaertner, I., Gerlach, M., Kuss, H.J., Laux, G., Müller-Oerlinghausen, B., Rao, M.L., Riederer, P., Zernig, G. (2004). Arbeitsge-meinschaft fur neuropsycho-pharmakologie und pharmakopsychiatrie. The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry. 37(6), 243–265. doi: 10.1055/s-2004-832687.

Baumann, P., Hiemke, C., Ulrich, S., Gaertner, I., Rao, M.L., Eckermann, G., Gerlach, M., Kuss, H.J., Laux, G., Müller-Oerlinghausen, B., Riederer, P., Zernig, G. (2004). Therapeutic monitoring of psychotropic drugs: an outline of the AGNP-TDM expert group consensus guideline. Ther. Drug Monit., 26(2),167–170. doi: 10.1097/00007691-200404000-00014.

Vogel, F., Gansmuller, R., Leiblein, T., Dietmaier, O., Wassmuth, H., Grunder, G., Hiemke, C. (2009). The use of ziprasidone in clinical practice: Analysis of pharmacokinetic and pharmacodynamic aspects from data of a drug monitoring survey. European Psychiatry, 24, 143–148. doi:10.1016/j.eurpsy.2008.09.003.

Ayano, G. (2016). Second Generation Antipsychotics: Pharmacodynamics, Therapeutic Effects Indications and Associated Metabolic Side Effects: Review of Articles. J. Schizophr. Res., 3(2): id1027. 01–05.

Farah, A. (2005). Atypicality of atypical antipsychotics. Prim Care Companion J. Clin. Psychiatry. 7 (6), 268–74. doi:10.4088/pcc.v07n0602.

Srinubabu, G., Rani, B., Rao, J.S. (2006). Spectrophotometric determination of Ziprasidone in pharmaceutical formulations. E-J. Chem., 3, 9–12. doi:10.1155/2006/643624.

Chauhan, C., Choudhury, P. (2010). UV spectrophotometric determination of ziprasidone hydrochloride in pore and pharmaceutical formulation. Asian J. Chem., 19(1), 819–820.

Mahale, M.V., Todkari, V.B., Kangane, M.R., Mohite, S.K., Magdum, C.S., Hembade, M.J. (2013). U.V. spectrophotometric method development for quantitative estimation of Ziprasidone hydrochloride. Intern. J. Pharm. Arch., 2(5), 92–94.

Mathrusri Annapurna, M., Malavika, V. (2022). New spectrophotometric methods for the estimation of Ziprasidone - An Antipsychotic drug. Res. J. Pharm. Techn., 15(7), 3209–3202. doi: 10.52711/0974-360X.2022.00538.

Choudhary, P.K., Sharma, P.K., Mathur, A.K., Ramnani, P., Jain, P. (2005). Development and validation of spectrophotometric method for the estimation of Ziprasidone HCl. Orient. J. Chem., 21(1).

Vijayalakshmi, R., Kalyani, K., Padma, J., Pushpamadhavi, M., Dhanaraju, M.D. (2010). Simple spectrophotometric methods for the determination of ziprasidone hydrochloride in pharmaceuticals using Folin-Ciocalteau and potassium ferricyanide. Orient. J. Chem., 26(2), 713–715.

El-Sherif, Z.A., El-Zeany, B., El-Houssini, O.M., Rashed, M.S., Aboul-Enein, H.Y. (2004). Stability indicating reversed-phase high-performance liquid chromatographic and thin layer densitometric methods for the determination of ziprasidone in bulk powder and in pharmaceutical formulations. Biomed. Chromatogr., 18, 143–149. doi: 10.1002/bmc.299.

Aniszewski, J.S., Fouda, H.G., Cole, R.O. (1995). Development and validation of a high-sensitivity assay for an antipsychotic agent, CP-88,059, with solid-phase extraction and narrow-bore highperformance liquid chromatography. J. Chromatogr. B, 668, 133–139. https://doi.org/10.1016/0378-4347(95)00071-P.

Suckow, R.F., Fein, M., Correll, C.U., Cooper, T.B. (2004). Determination of ziprasidone using liquid chromatography with fluorescence detection. J. Chromatogr. B, 799, 201–208. https://doi.org/10.1016/j.jchromb.2003.10.027.

Sachse, J., Haertter, S., Hiemke, C. (2005). Automated determination of ziprasidone by HPLC with column switching and spectrophotometric detection. Ther. Drug Monit., 27, 158–162. doi: 10.1097/01.ftd.0000150879.36296.4d.

Aldirbashi, O., Aboul-Enein, H., Alodaib, A., Jacob, M., Rashed, M. (2006). Rapid liquid chromatography-tandem mass spectrometry method for quantification of ziprasidone in human plasma. Biomed. Chromatogr., 20, 365–368. doi: 10.1002/bmc.571.

Aravagiri, M., Marder, S., Pollock, B. (2007). Determination of ziprasidone in human plasma by liquid chromatography-electrospray tandem mass spectrometry and its application to plasma level determination in schizophrenia patients. J. Chromatogr. B., 847, 237–244. https://doi.org/10.1016/j.jchromb.2006.10.024.

Farin, C., Kremser, L., Raggi, M., Kenndler, E. (2008). Determination of ziprasidone in pharmaceutical formulations by capillary zone electrophoresis. J. Pharm. Biomed. Anal., 46, 471–476. https://doi.org/10.1016/j.jpba.2007.11.01

Kul, D., Gumustas, M., Uslu, B., Ozkan, S.A. (2010). Electroanalytical characteristics of antipsychotic drug ziprasidone and its determination in pharmaceuticals and serum samples on solid electrodes. Talanta, 82, 286–295. https://doi.org/10.1016/j.talanta.2010.04.036.

AL-Timimi Zahra. (2019). A comparative study of determination the spectral characteristics of serum total protein among laser system and spectrophotometric: advantage and limitation of suggested methods. Curr. Analyt. Chem. 15(5), 583–590. doi: 10.2174/1573411014666180531092053.

Isildak, Ö., Özbek, O. (2020). Application of potentiometric sensors in real samples. Critical Rev. Analyt. Chem., 51(3), 218–231. doi: 10.1080/10408347.2019.1711013.

Kormosh, Z., Khalavka, Y., Susheel K. Mittal. (2023). Design and application of potentiometric sensors for the determination of mefenamic and phenylanthranilic acids. Anal. Methods. 15, 1903–1914. https://doi.org/10.1039/D2AY02092K.

Kormosh, Z., Gorbatyuk, N., Kormosh, N., Shevchuk, M., Liushuk, K., Kotsar, V., Bokhan, Yu., Borkova, S. (2023). Novel Potentiometric Sensor for the Determination of Ibuprofen. Pharm. Chem. J. 57(5), 745–749. https://doi.org/10.1007/s11094-023-02946-6.

Kormosh, Z., Susheel K. Mittal, Tkach, V., Yurchenko, O. (2022). Ionic associates of fuchsine basic dye as sensing probe for potentiometric determination of 2,4-dichlorophenoxy- and 4-chlorophenoxy acetic acids. Anal. Bioanal. Chem. Res. 9(4). 373–380. doi: 10.22036/ABCR.2022.292168.1649.

Kormosh, Zh., Kormosh, N., Golub, S., Pachenko, Yu., Yurchenko, O., Savchuk, T., Korolchuk, S., Borkova, S., Suprunovich, S. (2022). New potentiometric sensor for determination of metformin. Pharm. Chem. J. 56(8), 1140–1143; doi 10.1007/s11094-022-02765-1.

Kormosh, Zh., Kormosh, N., Bokhan, Y., Horbatiuk, N., Yurchenko, O., Tkach, V., Onyschuk, O. (2022). The new mephenaminate- and phenylanthranilate-selective membrane sensor. Anal. Bioanal. Electrochem. 14(1), 32–44.

Kormosh, Zh., Matskiv, O., Kormosh, N., Forostovska, T., Bokhan, Y., Golub, V., Gorbatyuk, N., Karaim, O. (2022). Potentiometric sensor for ketoprofen determination. Pharm. Chem. J. 55(12), 1412–1415. doi 10.1007/s11094-022-02590-6.

Kormosh, Zh., Kormosh, N., Bokhan, Yu., Gorbatyuk, N., Kotsan, I., Suprunovich, S., Parchenko, V., Savchuk, T., Korolchuk, S. Potentiometric Sensor for Naproxen Determination. (2021). Pharm. Chem. J. 55(1), 97–99. https://doi.org/10.1007/s11094-021-02379-z.

Zareh M.M. (2012). Plasticizers and their role in membrane selective electrodes. Recent Advances in Plasticizers. doi: 10.5772/36620.

Pechenkina, I.A., Mikhelson, K.N. (2015). Materials for the ionophore-based membranes for ion-selective electrodes: Problems and achievements (review paper). Russ. J. Electrochem. 51, 93–102. https://doi.org/10.1134/S1023193515020111.

Soledad García, M., Ortuño, J. A., Cuartero, M., Abuherba, M.S. (2011). Use of a new ziprasidone-selective electrode in mixed solvents and its application in the analysis of pharmaceuticals and biological fluids. Sensors. 11. 8813–8825. doi:10.3390/s110908813.

Kormosh, Z.A., Matviichuk, O.Y., Antal, I.P. Basel, Y.R. (2020). Sensors based on single- and double-layer plasticized membranes for the potentiometric determination of mefenamic and phenylanthranylic acids. J. Anal. Chem., 75, 820–828. https://doi.org/10.1134/S1061934820060131.

Sakač, N., Madunić-Čačić, D., Karnaš, M., Đurin, B., Kovač, I., Jozanović, M. (2021). The influence of plasticizers on the response characteristics of the surfactant sensor for cationic surfactant determination in disinfectants and antiseptics. Sensors, 21, 3535. 1–12. doi: 10.3390/s21103535.

Mchedlov-Petrossyan, N.O. (2004). [Fluorescein dyes in solutions: well studied systems?]. Kharkov University Bulletin. №626. Chemical Series, 11(34), 221–312. (in Russian).

Comments (0)

No login
gif