Salma, U., Ahmad, S., Alam, M. Z., Khan, S. A. (2024). Synthetic approaches and biological applications of triazole derivatives. Mol. Struct., 1301(137240). https://doi.org/10.1016/j.molstruc.2023.137240
Fan, Y. L., Ke, X., Liu, M. (2018). Coumarin–triazole hybrids and their biological activities. J. Heterocycl. Chem., 55(4), 791–802. https://doi.org/10.1002/jhet.3112
Phatak, P. S., Sathe, B. P., Dhumal, S. T., Rehman, N. N., Dixit, P. P., Khedkar, V. M., Haval, K. P. (2019). Synthesis, Antimicrobial Evaluation, and Docking Studies of Substituted Acetylphenoxymethyl‐triazolyl‐N‐phenylacetamides. J. Heterocycl. Chem., 56(7), 1928–1938. https://doi.org/10.1002/jhet.3568
Jadhav, R. P., Raundal, H. N., Patil, A. A., Bobade, V. D. (2017). Synthesis and biological evaluation of a series of 1, 4-disubstituted 1, 2, 3-triazole derivatives as possible antimicrobial agents. J. Saudi Chem. Soc., 21(2), 152–159. https://doi.org/10.1016/j.jscs.2015.03.003
Yadav, A., Kaushik, C. P. (2022). Synthesis and antibacterial evaluation of sulfonamide bridged disubstituted 1, 2, 3-triazoles. Synth. Commun., 52(24), 2261–2275. https://doi.org/10.1080/00397911.2022.2141126
Bo Zhang (2019). Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 168, 357–372. https://doi.org/10.1016/j.ejmech.2019.02.055
Marinescu, M. (2023). Benzimidazole-triazole hybrids as antimicrobial and antiviral agents: A systematic review. Antibiotics, 12(7), 1220. https://doi.org/10.3390/antibiotics12071220
Dwivedi, B., Bhardwaj, D., Choudhary, D. (2024). Green design and synthesis of some novel thiazolidinone appended benzothiazole–triazole hybrids as antimicrobial agents. RSC advances, 14(12), 8341–8352. https://doi.org/10.1039/D4RA00990H
Marzi, M., Farjam, M., Kazeminejad, Z., Shiroudi, A., Kouhpayeh, A., Zarenezhad, E. (2022). A recent overview of 1, 2, 3‐triazole‐containing hybrids as novel antifungal agents: Focusing on synthesis, mechanism of action, and structure‐activity relationship (SAR). Journal of Chemistry, 2022(1), 7884316. https://doi.org/10.1155/2022/7884316
Subhashini, N. J. P., Kumar, E. P., Gurrapu, N., Yerragunta, V. (2019). Design and synthesis of imidazolo-1, 2, 3-triazoles hybrid compounds by microwave-assisted method: Evaluation as an antioxidant and antimicrobial agents and molecular docking studies. J. Mol. Struct., 1180, 618–628. https://doi.org/10.1016/j.molstruc.2018.11.029
Chavan, P. V., Desai, U. V., Wadgaonkar, P. P., Tapase, S. R., Kodam, K. M., Choudhari, A., Sarkar, D. (2019). Click chemistry based multicomponent approach in the synthesis of spirochromenocarbazole tethered 1, 2, 3-triazoles as potential anticancer agents. Bioorg. Chem., 85, 475–486. https://doi.org/10.1016/j.bioorg.2019.01.070
Çeşme, M., Onur, S., Aksakal, E. Tümer, F. (2024). Novel hybrid structures based on 4-Chlorobenzenesulfonyl and 1,2,3-triazoles: Synthesis, in vitro biological activities and in silico studies. J. Mol. Liq., 409, 125501. https://doi.org/10.1016/j.molliq.2024.125501
El Azab, I.H., El-Sheshtawy, H.S., Bakr, R.B., Elkanzi N.A.A. (2021). New 1,2,3-Triazole-Containing Hybrids as Antitumor Candidates: Design, Click Reaction Synthesis, DFT Calculations, and Molecular Docking Study. Molecules, 26(3), 708. https://doi.org/10.3390/molecules26030708
Menendez, C., Gau, S., Lherbet, C., Rodriguez, F., Inard, C., Pasca, M. R., Baltas, M. (2011). Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 46(11), 5524–5531. https://doi.org/10.1016/j.ejmech.2011.09.013
Zhang, S., Xu, Z., Gao, C., Ren, Q. C., Chang, L., Lv, Z. S., Feng, L. S. (2017). Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 138, 501–513. https://doi.org/10.1016/j.ejmech.2017.06.051
Haleha, O. V., Povidaichyk, M. V., Svalyavin, O. V., Ostapchuk, E. M., Onysko, M. Y. (2023). [Synthesis and conversion of thiazinobenzothiazolium salts]. Voprosy khimii i khimicheskoi tekhnologii., 2, 61–66. (in Ukrainian). http://dx.doi.org/10.32434/0321-4095-2023-147-2-61-66
Haleha, O. V., Povidaichyk, M. V., Komarovska-Porokhnyavets, O. Z., Onysko, M. Y., Sukharev S. М. [Synthesis and antimicrobial activity of seleno(mercury)halogen-containing benzothiazole derivatives]. Sci. Bull. Uzhh. Univ. Ser. Chem., 49(1), 39–44. (in Ukrainian). https://doi.org/10.24144/2414-0260.2023.1.39-44
Shafi, S., Alam, M. M., Mulakayala, N., Mulakayala, C., Vanaja, G., Kalle, A. M., Alam, M. S. (2012). Synthesis of novel 2-mercapto benzothiazole and 1, 2, 3-triazole based bis-heterocycles: their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem., 49, 324–333. https://doi.org/10.1016/j.ejmech.2012.01.032
Mir, F., Shafi, S., Zaman, M. S., Kalia, N. P., Rajput, V. S., Mulakayala, C., Alam, M. S. (2014). Sulfur rich 2-mercaptobenzothiazole and 1, 2, 3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 76, 274–283. https://doi.org/10.1016/j.ejmech.2014.02.017
Kuribayashi, S., Shida, N., Inagi, S., Fuchigami, T. (2016). Synthesis of fluorinated triazole and isoxazole derivatives by electrochemical fluorination. Tetrahedron, 72(35), 5343–5349. https://doi.org/10.1016/j.tet.2016.07.016
Gong, Z., Peng, Y., Qiu, J., Cao, A., Wang, G., Peng, Z. (2017). Synthesis, In Vitro α-Inhibitory Activity and Molecular Docking Studies of Novel Benzothiazole-Triazole Derivatives. Molecules, 22(9), 1555. https://doi.org/10.3390/molecules22091555
Fizer, M., Slivka, M.; Baumer, V.; Slivka, M.; Fizer, O. (2019). Alkylation of 2-oxo(thioxo)-thieno[2,3-d]pyrimidine-4-ones: Experimental and theoretical study. Journal of Molecular Structure, 1198, 126858. https://doi.org/10.1016/j.molstruc.2019.07.105
Jaiswal, S., Devi, M., Sharma, N., Rathi, K., Dwivedi, J., Sharma, S. (2022). Emerging approaches for synthesis of 1, 2, 3-triazole derivatives. a review. Organic Preparations and Procedures International, 54(5), 387–422. https://doi.org/10.1080/00304948.2022.2069456
Reddy, G. S., Reddy, L. M., Kumar, A. S., Ramachary, D. B. (2020). Organocatalytic Selective [3+ 2] Cycloadditions: Synthesis of Functionalized 5-Arylthiomethyl-1, 2, 3-triazoles and 4-Arylthio-1, 2, 3-triazoles. The Journal of Organic Chemistry, 85(23), 15488–15501. https://doi.org/10.1021/acs.joc.0c02247
Kumar, S., Lal, B., Tittal, R. K. (2024). Green Synthesis of 1, 2, 3-Triazoles: A Sustainable Approach. Green Chemistry. https://doi.org/10.1039/D3GC04346
Hu, H., Ohno, A., Sato, T., Mase, T., Uozumi, Y., Yamada, Y. M. (2019). Self-assembled polymeric pyridine copper catalysts for Huisgen cycloaddition with alkynes and acetylene gas: application in synthesis of tazobactam. Org. Process Res. Dev., 23(4), 493–498. https://doi.org/10.1021/acs.oprd.8b00429
Trujillo, M., Hull-Crew, C., Outlaw, A., Stewart, K., Taylor, L., George, L., .Schoffstall, A. (2019). Green methodologies for copper (I)-catalyzed azide-alkyne cycloadditions: a comparative study. Molecules, 24(5), 973. https://doi.org/10.3390/molecules24050973
Rzonsowska, M., Kozakiewicz, K., Mituła, K., Duszczak, J., Kubicki, M., Dudziec, B. (2021). Synthesis of silsesquioxanes with substituted triazole ring functionalities and their coordination ability. Molecules, 26(2), 439. https://doi.org/10.3390/molecules26020439
Mittersteiner, M., Aquino, E. C., Budragchaa, T., Wessjohann, L. A., Bonacorso, H. G., Martins, M. A., Zanatta, N. (2022). Synthesis of Methylene-Bridged Trifluoromethyl Azoles Using 5-(1, 2, 3-Triazol-1-yl) enones. Synthesis, 54(02), 439–450. https://doi.org/10.1055/s-0040-1719837
Bagra, N., Jain, R. (2022). Synthesis of 4-(1, 2, 3-triazol-1-yl)-L-phenylalanines. Synthetic Communications, 52(8), 1176–1183. https://doi.org/10.1080/00397911.2022.2077114
Nural, Y., Ozdemir, S., Doluca, O., Demir, B., Yalcin, M. S., Atabey, H., Seferoglu, Z. (2020). Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone–triazole hybrids. Bioorganic Chemistry, 105, 104441. https://doi.org/10.1016/j.bioorg.2020.104441
Igual, M. O., Nunes, P. S., da Costa, R. M., Mantoani, S. P., Tostes, R. C., Carvalho, I. (2019). Novel glucopyranoside C2-derived 1, 2, 3-triazoles displaying selective inhibition of O-GlcNAcase (OGA). Carbohydrate research, 471, 43–55. https://doi.org/10.1016/j.carres.2018.10.007
Comments (0)