Akondi, A.M., Mekala, S., Kantam, M.L., Trivedi, R., Chowhan, L.R., Das, A. (2017) An expedient microwave assisted regio and stereoselective synthesis of spiroquinoxaline pyrrolizine derivatives and their AChE inhibitory activity. N. J. Chem., 41, 873–878. https://doi.org/10.1039/C6NJ02869A
Khan, M.S., Munawar, M.A., Ashraf, M., Alam, U., Ata, A., Asiri, A.M., Kousar, S., Khan, M.A. (2014) Synthesis of novel denoquinoxaline derivatives as potent a-glucosidase inhibitors. Bioorg. Med. Chem., 22, 1195–1200. https://doi.org/ 10.1016/j.bmc.2013.12.024
Schepetkin, I.A., Khlebnikov, A.I., Potapov, A.S., Kovrizhina, A.R., Matveevskaya, V.V., Belyanin, M.L., Atochin, D.N., Zanoza, S.O., Gaidarzhy, N.M., Lyakhov, S.A., Kirpotina, L.N., Quinn, M.T. (2019). Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur. J. Med. Chem., 161, 179–191. 10.1016/j.ejmech.2018.10.023
Schepetkin, I.A., Kirpotina, L.N., Khlebnikov, A.I., Hanks, T.S., Kochetkova, I., Pascual, D.W., Jutila, M.A., Quinn, M.T. (2012) Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors. Mol. Pharmacol, 81, 832–845. https://doi.org/10.1124/mol.111.077446
Atochin, D.N., Schepetkin, I.A., Klebnikov, I.A., Seledtsov, V.I., Swanson, H., Quinn, M.T., Huang, P.L. (2016) A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice. Neurosci. Lett, 618, 45–49. https://doi.org/10.1016/j.neulet.2016.02.033
Liakhov, S.A., Schepetkin I.A., Karpenko, O.S., Duma, H.I., Haidarzhy, N.M., Kirpotina, L.N., Kovrizhina, A.R., Khlebnikov, A.I., Bagryanskaya, I.Y., Quinn, M.T. (2021) Novel c-Jun N-Terminal Kinase (JNK) Inhibitors with an 11H-Indeno[1,2-b]quinoxalin-11-one Scaffold. Molecules, 25, 688. https://doi.org/10.3390/molecules26185688
Ren W., Zhao Q., Yu M., Guo L., Chang H.-M., Jiang X., Luo Y.-F., Huang W., He G. (2020). Design and synthesis of novel spirooxindole-indenoquinoxaline derivatives as novel tryptophanyl-tRNA synthetase inhibitors. Mol. Divers., 24, 1043–1063. https://doi.org/10.1007/s11030-019-10011-2
Gomaa M. A. M., El-Katatny M. H., Ali H. A. (2020). Synthesis and characterization of N′-(11 H-indeno[1,2-b]quinoxalin-11-ylidene) benzohydrazonamides as potential antimicrobial agents. Synth. Commun., 50, 2819–2829. https://doi.org/10.1080/00397911.2020.1786122
Abd El Salam, H. A. , El-Bendary, H. A., Ibrahim, M. A., El-Samahy, F. A. (2020). Synthesis, Molecular Modeling and Biological Evaluation of Indeno[1,2-b]quinoxaline Derivatives as Antifungal and Antibacterial Agents. Egypt. J. Chem., 63, 2577–2590.
Kovrizhina, A. R., Samorodova, E. I., Khlebnikov, A. I. (2021). 11H-Indeno[1,2-b]quinoxalin-11-one 2-(4-ethylbenzylidene)hydrazone. Molbank, 4, M 1299. https://doi.org/10.3390/M1299
Tseng C.-H., Chen Y.-R., Tzeng C.-C., Liu W., Chou C.-K., Chiu C.-C., Chen Y.-H. (2016) Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents. Eur. J. Med. Chem., 108, 258–273. https://doi.org/10.1016/j.ejmech.2015.11.031
Eldeken G. A., El-Samahy, F. A., Zayed, E. M., Osman, F. H., Elgemeie, G. E. (2022). Synthesis, Biological Activities and Molecular Docking analysis of a Novel Series of 11H-Indeno [1,2-b]quinoxalin-11-one Derivatives . J. Mol. Struct., 1261, 132929. https://doi.org/10.1016/j.molstruc.2022.132929
Tantawy E. S. Amer, A. M., Mohamed, E. K., Abd Alla, M. M., Nafie, M. S. (2022) Synthesis, characterization of some pyrazine derivatives as anti-cancer agents: In vitro and in Silico approaches J. Mol. Struct., 1210, 128013. https://doi.org/10.1016/j.molstruc.2020.128013
Ruby, S., Diksha, Bh., Munna, R. S. (2021) Recent advancement in the synthesis of diverse spiro-indeno[1,2-b]quinoxalines: a review. RSC Adv.,11, 4760. https://doi.org/10.1039/d0ra09130h
Liao, L.-G.; Song, M.-M.,Feng, J.-F., Tan, M., Liu, F., Qiu, Z.-J., Zhang, S., Li, B.-J. (2022) Green Synthesis of Indeno[1,2-b]quinoxalines Using Cyclodextrin as Catalyst. Molecules, 27, 580. https://doi.org/10.3390/molecules27020580
Fayeda, E.A., Ammarb, Y. A., Ragabb, A., Goharc, N. A., Mehanyd, A.B.M., Farrag, A. M. (2020) In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorganic Chemistry, 100, 103951.
Manning G.S. (1978). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys., 2, 179–246. https://doi.org/10.1017/s0033583500002031
Moravek, Z., Neidle, S., Schneider, B. (2002) Protein and drug interactions in the minor groove of DNA. Nucleic Acids Res., 30(5), 1182–1191. https://doi.org/10.1093%2Fnar%2F30.5.1182
Sazonov, K.D., Ishkov, Yu.V. (2024). Development of an effective method for synthesis of new derivatives of indenoquinoxaline carboxylic acids with esters of α-, β-amino acids. Odesa National University Herald, Seria himia, 29, 1(87), 91–98. https://doi.org/10.18524/2304–0947.2024.1(87).307869
Sovin, O.R., Paczaj, I.O. (2012) Programa “SpectroCalc–H5A“ dlya rozraxunku konstant kyslotnosti na osnovi spektrofotometrychnyx danyx. Methods and objects of chem. analysis, 7(2), 74–80.
Antonini, I., Polucci, P., Kelland, L.R., Menta, E., Pescalli, N., Martelli, S. (1999). 2,3-Dihydro-1H,7H-pyrimido[5,6,1-de]acridine-1,3,7-trione Derivatives, a Class of Cytotoxic Agents Active on Multidrug-Resistant Cell Lines: Synthesis, Biological Evaluation, and Structure-Activity Relationships. J. Med.Chem., 42(14), 2535 – 2541. https://doi.org/10.1021/jm9805586
Sel’kova, E.P., Iakovlev, V.N., Semenenko, T.A., Filatov, N.N., Gotvianskaia, T.P., Danilina, G.A., Pantiukhova, T.N., Nikitina, G.I., Tur’ianov, M.K. (2001). Evaluation of amyxin effect in prophylaxis of acute respiratory viral infections. Zh. Mikrobiol. Epidemiol. Immunobiol., 3, 42–46.
Heiko, I., Daniela, O. (2005). Intercalation of Organic Dye Molecules into Double-Stranded DNA – General Principles and Recent Developments. Supermolecular Dye Chemistry, Topics in Current Chemistry, 258(5). http://dx.doi.org/10.1007/b135804
Peltonen, K., Colis, L., Liu, H., Jaamaa, S., Moore, H.M., Enback, J., Laakkonen, P., Vaahtokari, A., Jones, R.J., af Hallstrom, T.M., Laiho, M. (2010). Identification of novel p53 pathway activating small-molecule compounds reveals unexpected similarities with known therapeutic agents. PLoS. One., 5(9), 12996. https://doi.org/10.1371/journal.pone.0012996
Tomoki, N., Tadashi, O., Andrew, M. K., Naohiko, S., Yoichi, T., Kazuo, S. (2007). DNA Binding of Tilorone: 1H NMR and Calorimetric Studies of the Intercalation. Biochemistry, 46, 8156–8163. https://doi.org/10.1021/bi602402m
Comments (0)