Newly isolated terpenoids (covering 2019–2024) from species and their potential for the discovery of novel antimicrobials

Kalpana S, Lin W-Y, Wang Y-C, Fu Y, Lakshmi A, Wang H-Y. Antibiotic resistance diagnosis in ESKAPE pathogens—a review on proteomic perspective. Diagnostics. 2023;13:1014. https://doi.org/10.3390/diagnostics13061014.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol. 2023;21:519–34. https://doi.org/10.1038/s41579-023-00877-3.

Article  PubMed  CAS  Google Scholar 

Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 2020;88:26–40. https://doi.org/10.1007/s00239-019-09914-3.

Article  PubMed  CAS  Google Scholar 

Bungau S, Tit DM, Behl T, Aleya L, Zaha DC. Aspects of excessive antibiotic consumption and environmental influences correlated with the occurrence of resistance to antimicrobial agents. Curr Opin in Environ Sci Health. 2021;19: 100224. https://doi.org/10.1016/j.coesh.2020.10.012.

Article  Google Scholar 

Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev. 2021;121:3390–411. https://doi.org/10.1021/acs.chemrev.0c00199.

Article  PubMed  CAS  Google Scholar 

Ippolito MM, Moser KA, Kabuya J-BB, Cunningham C, Juliano JJ. Antimalarial drug resistance and implications for the WHO global technical strategy. Curr Epidemiol Rep. 2021;8:46–62. https://doi.org/10.1007/s40471-021-00266-5.

Article  PubMed  PubMed Central  Google Scholar 

Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–10. https://doi.org/10.2147/IDR.S234610.

Article  PubMed  PubMed Central  CAS  Google Scholar 

De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020. https://doi.org/10.1128/cmr.00181-19.

Article  PubMed  PubMed Central  Google Scholar 

Zhen X, Lundborg CS, Sun X, Hu X, Dong H. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control. 2019;8:137. https://doi.org/10.1186/s13756-019-0590-7.

Article  PubMed  PubMed Central  Google Scholar 

Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 2021;10:1310. https://doi.org/10.3390/pathogens10101310.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19:1578. https://doi.org/10.3390/ijms19061578.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E. Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res. 2018;32:1926–50. https://doi.org/10.1080/14786419.2017.1356838.

Article  PubMed  CAS  Google Scholar 

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.

Article  PubMed  CAS  Google Scholar 

Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16. https://doi.org/10.1038/s41573-020-00114-z.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lalchhandama K. History of penicillin. Wiki J Med. 2021;8:1–16. https://doi.org/10.3316/informit.644471542314939.

Article  Google Scholar 

Tiwari P, Bae H. Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms. 2022;10:360. https://doi.org/10.3390/microorganisms10020360.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gakuubi MM, Munusamy M, Liang Z-X, Ng SB. Fungal endophytes: a promising frontier for discovery of novel bioactive compounds. J Fungi. 2021;7:786. https://doi.org/10.3390/jof7100786.

Article  Google Scholar 

Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol. 2015;99:7859–77. https://doi.org/10.1007/s00253-015-6839-z.

Article  PubMed  CAS  Google Scholar 

Zhang X, Li Z, Gao J. Chemistry and biology of secondary metabolites from Aspergillus genus. Nat Prod J. 2018;8:275–304. https://doi.org/10.2174/2210315508666180501154759.

Article  CAS  Google Scholar 

Boruta T, Milczarek I, Bizukojc M. Evaluating the outcomes of submerged co-cultivation: production of lovastatin and other secondary metabolites by Aspergillus terreus in fungal co-cultures. Appl Microbiol Biotechnol. 2019;103:5593–605. https://doi.org/10.1007/s00253-019-09874-0.

Article  PubMed  PubMed Central  CAS  Google Scholar 

El-hawary SS, Moawad AS, Bahr HS, Ramadan Abdelmohsen U, Mohammed R. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 2020;10:22058–79. https://doi.org/10.1039/D0RA04290K.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sun Y, Liu W-C, Shi X, Zheng H-Z, Zheng Z-H, Lu X-H, et al. Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis. Microb Cell Fact. 2021;20:42. https://doi.org/10.1186/s12934-021-01527-0.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yao F-H, Liang X, Cheng X, Ling J, Dong J-D, Qi S-H. Antifungal peptides from the marine gorgonian-associated fungus Aspergillus sp. SCSIO41501. Phytochemistry. 2021;192: 112967. https://doi.org/10.1016/j.phytochem.2021.112967.

Article  PubMed  CAS  Google Scholar 

He W, Xu Y, Wu D, Wang D, Gao H, Wang L, et al. New alkaloids from the diversity-enhanced extracts of an endophytic fungus Aspergillus flavus GZWMJZ-288. Bioorg Chem. 2021;107: 104623. https://doi.org/10.1016/j.bioorg.2020.104623.

Article  PubMed  CAS  Google Scholar 

Fang S-T, Liu X-H, Yan B-F, Miao F-P, Yin X-L, Li W-Z, et al. Terpenoids from the marine-derived fungus Aspergillus sp. RR-YLW-12, associated with the red alga Rhodomela confervoides. J Nat Prod. 2021;84:1763–71. https://doi.org/10.1021/acs.jnatprod.1c00021.

Article  PubMed  CAS  Google Scholar 

Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in pharmacological activities of terpenoids. Nat Prod Comm. 2020;15:1934578X20903555. https://doi.org/10.1177/1934578X20903555.

Article  CAS  Google Scholar 

Dong L-M, Huang L-L, Dai H, Xu Q-L, Ouyang J-K, Jia X-C, et al. Anti-MRSA sesquiterpenes from the semi-mangrove plant Myoporum bontioides A Gray. Mar Drugs. 2018;16:438. https://doi.org/10.3390/md16110438.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Azuama OC, Ortiz S, Quirós-Guerrero L, Bouffartigues E, Tortuel D, Maillot O, et al. Tackling Pseudomonas aeruginosa virulence by mulinane-like diterpenoids from Azorella atacamensis. Biomolecules. 2020;10:1626. https://doi.org/10.3390/biom10121626.

Article  PubMed 

Comments (0)

No login
gif