Kalpana S, Lin W-Y, Wang Y-C, Fu Y, Lakshmi A, Wang H-Y. Antibiotic resistance diagnosis in ESKAPE pathogens—a review on proteomic perspective. Diagnostics. 2023;13:1014. https://doi.org/10.3390/diagnostics13061014.
Article PubMed PubMed Central CAS Google Scholar
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol. 2023;21:519–34. https://doi.org/10.1038/s41579-023-00877-3.
Article PubMed CAS Google Scholar
Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 2020;88:26–40. https://doi.org/10.1007/s00239-019-09914-3.
Article PubMed CAS Google Scholar
Bungau S, Tit DM, Behl T, Aleya L, Zaha DC. Aspects of excessive antibiotic consumption and environmental influences correlated with the occurrence of resistance to antimicrobial agents. Curr Opin in Environ Sci Health. 2021;19: 100224. https://doi.org/10.1016/j.coesh.2020.10.012.
Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev. 2021;121:3390–411. https://doi.org/10.1021/acs.chemrev.0c00199.
Article PubMed CAS Google Scholar
Ippolito MM, Moser KA, Kabuya J-BB, Cunningham C, Juliano JJ. Antimalarial drug resistance and implications for the WHO global technical strategy. Curr Epidemiol Rep. 2021;8:46–62. https://doi.org/10.1007/s40471-021-00266-5.
Article PubMed PubMed Central Google Scholar
Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–10. https://doi.org/10.2147/IDR.S234610.
Article PubMed PubMed Central CAS Google Scholar
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020. https://doi.org/10.1128/cmr.00181-19.
Article PubMed PubMed Central Google Scholar
Zhen X, Lundborg CS, Sun X, Hu X, Dong H. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control. 2019;8:137. https://doi.org/10.1186/s13756-019-0590-7.
Article PubMed PubMed Central Google Scholar
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 2021;10:1310. https://doi.org/10.3390/pathogens10101310.
Article PubMed PubMed Central CAS Google Scholar
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19:1578. https://doi.org/10.3390/ijms19061578.
Article PubMed PubMed Central CAS Google Scholar
Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E. Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res. 2018;32:1926–50. https://doi.org/10.1080/14786419.2017.1356838.
Article PubMed CAS Google Scholar
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.
Article PubMed CAS Google Scholar
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16. https://doi.org/10.1038/s41573-020-00114-z.
Article PubMed PubMed Central CAS Google Scholar
Lalchhandama K. History of penicillin. Wiki J Med. 2021;8:1–16. https://doi.org/10.3316/informit.644471542314939.
Tiwari P, Bae H. Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms. 2022;10:360. https://doi.org/10.3390/microorganisms10020360.
Article PubMed PubMed Central CAS Google Scholar
Gakuubi MM, Munusamy M, Liang Z-X, Ng SB. Fungal endophytes: a promising frontier for discovery of novel bioactive compounds. J Fungi. 2021;7:786. https://doi.org/10.3390/jof7100786.
Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol. 2015;99:7859–77. https://doi.org/10.1007/s00253-015-6839-z.
Article PubMed CAS Google Scholar
Zhang X, Li Z, Gao J. Chemistry and biology of secondary metabolites from Aspergillus genus. Nat Prod J. 2018;8:275–304. https://doi.org/10.2174/2210315508666180501154759.
Boruta T, Milczarek I, Bizukojc M. Evaluating the outcomes of submerged co-cultivation: production of lovastatin and other secondary metabolites by Aspergillus terreus in fungal co-cultures. Appl Microbiol Biotechnol. 2019;103:5593–605. https://doi.org/10.1007/s00253-019-09874-0.
Article PubMed PubMed Central CAS Google Scholar
El-hawary SS, Moawad AS, Bahr HS, Ramadan Abdelmohsen U, Mohammed R. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 2020;10:22058–79. https://doi.org/10.1039/D0RA04290K.
Article PubMed PubMed Central CAS Google Scholar
Sun Y, Liu W-C, Shi X, Zheng H-Z, Zheng Z-H, Lu X-H, et al. Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis. Microb Cell Fact. 2021;20:42. https://doi.org/10.1186/s12934-021-01527-0.
Article PubMed PubMed Central CAS Google Scholar
Yao F-H, Liang X, Cheng X, Ling J, Dong J-D, Qi S-H. Antifungal peptides from the marine gorgonian-associated fungus Aspergillus sp. SCSIO41501. Phytochemistry. 2021;192: 112967. https://doi.org/10.1016/j.phytochem.2021.112967.
Article PubMed CAS Google Scholar
He W, Xu Y, Wu D, Wang D, Gao H, Wang L, et al. New alkaloids from the diversity-enhanced extracts of an endophytic fungus Aspergillus flavus GZWMJZ-288. Bioorg Chem. 2021;107: 104623. https://doi.org/10.1016/j.bioorg.2020.104623.
Article PubMed CAS Google Scholar
Fang S-T, Liu X-H, Yan B-F, Miao F-P, Yin X-L, Li W-Z, et al. Terpenoids from the marine-derived fungus Aspergillus sp. RR-YLW-12, associated with the red alga Rhodomela confervoides. J Nat Prod. 2021;84:1763–71. https://doi.org/10.1021/acs.jnatprod.1c00021.
Article PubMed CAS Google Scholar
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in pharmacological activities of terpenoids. Nat Prod Comm. 2020;15:1934578X20903555. https://doi.org/10.1177/1934578X20903555.
Dong L-M, Huang L-L, Dai H, Xu Q-L, Ouyang J-K, Jia X-C, et al. Anti-MRSA sesquiterpenes from the semi-mangrove plant Myoporum bontioides A Gray. Mar Drugs. 2018;16:438. https://doi.org/10.3390/md16110438.
Article PubMed PubMed Central CAS Google Scholar
Azuama OC, Ortiz S, Quirós-Guerrero L, Bouffartigues E, Tortuel D, Maillot O, et al. Tackling Pseudomonas aeruginosa virulence by mulinane-like diterpenoids from Azorella atacamensis. Biomolecules. 2020;10:1626. https://doi.org/10.3390/biom10121626.
Comments (0)