Activation of Wet-Pulled Carbon Nanotube Fibers for Electrochemical Detection of Dopamine

Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

Article  CAS  PubMed  Google Scholar 

Berke JD. What does dopamine mean? Nat Neurosci. 2018;21:787–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:24.

Article  PubMed  PubMed Central  Google Scholar 

Robinson DL, Wightmas RM. Rapid dopamine release in freely moving rats. In: Michael AC, Borland LM, editors. Electrochemical methods for neuroscience. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. p. 7–18.

Google Scholar 

Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39:31–59.

Article  PubMed  Google Scholar 

Björklund A, Dunnett SB. Fifty years of dopamine research. Trends Neurosci. 2007;30:185–7.

Article  PubMed  Google Scholar 

Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem. 2014;129:898–915.

Article  CAS  PubMed  Google Scholar 

Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.

Article  CAS  PubMed  Google Scholar 

Wu Z, Lin D, Li Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci. 2022;23:257–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li YT, Tang LN, Ning Y, Shu Q, Liang FX, Wang H, Zhang GJ. In vivo monitoring of serotonin by nanomaterial functionalized acupuncture needle. Sci Rep. 2016;6:28018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Da T, Luo S, Tian Y. Real-time monitoring of neurotransmitters in the brain of living animals. ACS Appl Mater Interfaces. 2022;15(1):138–57.

Article  PubMed  Google Scholar 

Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, Bennet KE, Garris PA, Blaha CD, Lee KH. Wireless instantaneous neurotransmitter concentration system–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. J Neurosurg. 2009;111:701–11.

Article  PubMed  PubMed Central  Google Scholar 

Si B, Song E. Recent advances in the detection of neurotransmitters. Chemosensors. 2018;6:1.

Article  Google Scholar 

Doughty PT, Hossain I, Gong C, Ponder KA, Pati S, Arumugam PU, Murray TA. Novel microwire-based biosensor probe for simultaneous real-time measurement of glutamate and GABA dynamics in vitro and in vivo. Sci Rep. 2020;10:12777.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lakard S, Pavel IA, Lakard B. Electrochemical biosensing of dopamine neurotransmitter: a review. Biosensors. 2021;11:179.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim DS, Kang ES, Baek S, Choo SS, Chung YH, Lee D, Min J, Kim TH. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci Rep. 2018;8:14049.

Article  PubMed  PubMed Central  Google Scholar 

Ferapontova EE. Electrochemical analysis of dopamine: perspectives of specific in vivo detection. Electrochim Acta. 2017;245:664–71.

Article  CAS  Google Scholar 

Bazaka K, Jacob M. Implantable devices: issues and challenges. Electronics. 2012;2:1–34.

Article  Google Scholar 

Carnicer-Lombarte A, Chen S-T, Malliaras GG, Barone DG. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetic. Front Bioeng Biotechnol. 2021;9:622524.

Article  PubMed  PubMed Central  Google Scholar 

Afanasenkau D, Kalinina D, Lyakhovetskii V, Tondera C, Gorsky O, Moosavi S, Pavlova N, Merkulyeva N, Kalueff AV, Minev IR, Musienko P. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat Biomed Eng. 2020;4:1010–22.

Article  PubMed  Google Scholar 

Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater. 2016;1:16063.

Article  CAS  Google Scholar 

Gimsa J, Habel B, Schreiber U, van Rienen U, Strauss U, Gimsa U. Choosing electrodes for deep brain stimulation experiments–electrochemical considerations. J Neurosci Methods. 2005;142:251–65.

Article  PubMed  Google Scholar 

Hejazi M, Tong W, Ibbotson MR, Prawer S, Garrett DJ. Advances in carbon-based microfiber electrodes for neural interfacing. Front Neurosci. 2021;15: 658703.

Article  PubMed  PubMed Central  Google Scholar 

McCreery RL. Advanced carbon electrode materials for molecular electrochemistry. Chem Rev. 2008;108:2646–87.

Article  CAS  PubMed  Google Scholar 

Lin R, Lim TM, Tran T. Carbon nanotube band electrodes for electrochemical sensors. Electrochem Commun. 2018;86:135–9.

Article  CAS  Google Scholar 

Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivistö S, Rackauskas S, Timmermans MY, Pudas M, Aitchison B, Kauppinen M, Brown DP, Okhotnikov OG, Kauppine EI. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano. 2011;5:3214–21.

Article  CAS  PubMed  Google Scholar 

Feng J, Chen C, Sun X, Peng H. Implantable fiber biosensors based on carbon nanotubes. Acc Mater Res. 2021;2:138–46.

Article  CAS  Google Scholar 

Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A. High-performance carbon nanotube fiber. Science. 2007;318:1892–5.

Article  CAS  PubMed  Google Scholar 

Xu X, Xie S, Zhang Y, Peng H. The rise of fiber electronics. Angew Chem Int Ed. 2019;58:13643–53.

Article  CAS  Google Scholar 

Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng. 2020;4:159–71.

Article  CAS  PubMed  Google Scholar 

Schmidt AC, Wang X, Zhu Y, Sombers LA. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissu. ACS Nano. 2013;7:7864–73.

Article  CAS  PubMed  Google Scholar 

Yang C, Trikantzopoulos E, Nguyen MD, Jacobs CB, Wang Y, Mahjouri-Samani M, Ivanov IN, Venton BJ. Laser treated carbon nanotube yarn microelectrodes for rapid and sensitive detection of dopamine in vivo. ACS Sensors. 2016;1:508–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zestos AG, Jacobs CB, Trikantzopoulos E, Ross AE, Venton BJ. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters. Anal Chem. 2014;86:8568–75.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif