Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.
Article CAS PubMed Google Scholar
Berke JD. What does dopamine mean? Nat Neurosci. 2018;21:787–93.
Article CAS PubMed PubMed Central Google Scholar
Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:24.
Article PubMed PubMed Central Google Scholar
Robinson DL, Wightmas RM. Rapid dopamine release in freely moving rats. In: Michael AC, Borland LM, editors. Electrochemical methods for neuroscience. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. p. 7–18.
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39:31–59.
Björklund A, Dunnett SB. Fifty years of dopamine research. Trends Neurosci. 2007;30:185–7.
Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem. 2014;129:898–915.
Article CAS PubMed Google Scholar
Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.
Article CAS PubMed Google Scholar
Wu Z, Lin D, Li Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci. 2022;23:257–74.
Article CAS PubMed PubMed Central Google Scholar
Li YT, Tang LN, Ning Y, Shu Q, Liang FX, Wang H, Zhang GJ. In vivo monitoring of serotonin by nanomaterial functionalized acupuncture needle. Sci Rep. 2016;6:28018.
Article CAS PubMed PubMed Central Google Scholar
Da T, Luo S, Tian Y. Real-time monitoring of neurotransmitters in the brain of living animals. ACS Appl Mater Interfaces. 2022;15(1):138–57.
Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, Bennet KE, Garris PA, Blaha CD, Lee KH. Wireless instantaneous neurotransmitter concentration system–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. J Neurosurg. 2009;111:701–11.
Article PubMed PubMed Central Google Scholar
Si B, Song E. Recent advances in the detection of neurotransmitters. Chemosensors. 2018;6:1.
Doughty PT, Hossain I, Gong C, Ponder KA, Pati S, Arumugam PU, Murray TA. Novel microwire-based biosensor probe for simultaneous real-time measurement of glutamate and GABA dynamics in vitro and in vivo. Sci Rep. 2020;10:12777.
Article CAS PubMed PubMed Central Google Scholar
Lakard S, Pavel IA, Lakard B. Electrochemical biosensing of dopamine neurotransmitter: a review. Biosensors. 2021;11:179.
Article CAS PubMed PubMed Central Google Scholar
Kim DS, Kang ES, Baek S, Choo SS, Chung YH, Lee D, Min J, Kim TH. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci Rep. 2018;8:14049.
Article PubMed PubMed Central Google Scholar
Ferapontova EE. Electrochemical analysis of dopamine: perspectives of specific in vivo detection. Electrochim Acta. 2017;245:664–71.
Bazaka K, Jacob M. Implantable devices: issues and challenges. Electronics. 2012;2:1–34.
Carnicer-Lombarte A, Chen S-T, Malliaras GG, Barone DG. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetic. Front Bioeng Biotechnol. 2021;9:622524.
Article PubMed PubMed Central Google Scholar
Afanasenkau D, Kalinina D, Lyakhovetskii V, Tondera C, Gorsky O, Moosavi S, Pavlova N, Merkulyeva N, Kalueff AV, Minev IR, Musienko P. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat Biomed Eng. 2020;4:1010–22.
Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater. 2016;1:16063.
Gimsa J, Habel B, Schreiber U, van Rienen U, Strauss U, Gimsa U. Choosing electrodes for deep brain stimulation experiments–electrochemical considerations. J Neurosci Methods. 2005;142:251–65.
Hejazi M, Tong W, Ibbotson MR, Prawer S, Garrett DJ. Advances in carbon-based microfiber electrodes for neural interfacing. Front Neurosci. 2021;15: 658703.
Article PubMed PubMed Central Google Scholar
McCreery RL. Advanced carbon electrode materials for molecular electrochemistry. Chem Rev. 2008;108:2646–87.
Article CAS PubMed Google Scholar
Lin R, Lim TM, Tran T. Carbon nanotube band electrodes for electrochemical sensors. Electrochem Commun. 2018;86:135–9.
Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivistö S, Rackauskas S, Timmermans MY, Pudas M, Aitchison B, Kauppinen M, Brown DP, Okhotnikov OG, Kauppine EI. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano. 2011;5:3214–21.
Article CAS PubMed Google Scholar
Feng J, Chen C, Sun X, Peng H. Implantable fiber biosensors based on carbon nanotubes. Acc Mater Res. 2021;2:138–46.
Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A. High-performance carbon nanotube fiber. Science. 2007;318:1892–5.
Article CAS PubMed Google Scholar
Xu X, Xie S, Zhang Y, Peng H. The rise of fiber electronics. Angew Chem Int Ed. 2019;58:13643–53.
Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng. 2020;4:159–71.
Article CAS PubMed Google Scholar
Schmidt AC, Wang X, Zhu Y, Sombers LA. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissu. ACS Nano. 2013;7:7864–73.
Article CAS PubMed Google Scholar
Yang C, Trikantzopoulos E, Nguyen MD, Jacobs CB, Wang Y, Mahjouri-Samani M, Ivanov IN, Venton BJ. Laser treated carbon nanotube yarn microelectrodes for rapid and sensitive detection of dopamine in vivo. ACS Sensors. 2016;1:508–15.
Article CAS PubMed PubMed Central Google Scholar
Zestos AG, Jacobs CB, Trikantzopoulos E, Ross AE, Venton BJ. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters. Anal Chem. 2014;86:8568–75.
Comments (0)