Machine Learning Approaches to Prognostication in Traumatic Brain Injury

Centers for Disease Control and Prevention. Surveillance report of traumatic brain injury-related deaths by age group, sex, and mechanism of injury—United States, 2018 and 2019. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services. 2022.

Andelic N, Howe EI, Hellstrom T, et al. Disability and quality of life 20 years after traumatic brain injury. Brain Behav. 2018;8(7):e01018. https://doi.org/10.1002/brb3.1018.

Article  PubMed  PubMed Central  Google Scholar 

Jourdan C, Azouvi P, Genet F, Selly N, Josseran L, Schnitzler A. Disability and health consequences of traumatic brain injury: national prevalence. Am J Phys Med Rehabil. 2018;97(5):323–31. https://doi.org/10.1097/PHM.0000000000000848.

Article  PubMed  Google Scholar 

Zaloshnja E, Miller T, Langlois JA, Selassie AW. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil. 2008;23(6):394–400. https://doi.org/10.1097/01.HTR.0000341435.52004.ac.

Article  PubMed  Google Scholar 

Muehlschlegel S, Rajajee V, Wartenberg KE, et al. Guidelines for neuroprognostication in critically Ill adults with moderate-severe traumatic brain injury. Neurocrit Care. 2024;40(2):448–76. https://doi.org/10.1007/s12028-023-01902-2.

Article  PubMed  PubMed Central  Google Scholar 

Kim KA, Kim H, Ha EJ, Yoon BC, Kim DJ. Artificial intelligence-enhanced neurocritical care for traumatic brain injury : past, present and future. J Korean Neurosurg Soc. 2024;67(5):493–509. https://doi.org/10.3340/jkns.2023.0195.

Article  PubMed  PubMed Central  Google Scholar 

Carra G, Guiza F, Piper I, et al. Development and external validation of a machine learning model for the early prediction of doses of harmful intracranial pressure in patients with severe traumatic brain injury. J Neurotrauma. 2023;40(5–6):514–22. https://doi.org/10.1089/neu.2022.0251.

Article  PubMed  Google Scholar 

Chen W, Cockrell CH, Ward K, Najarian K. Predictability of intracranial pressure level in traumatic brain injury: features extraction, statistical analysis and machine learning-based evaluation. Int J Data Min Bioinform. 2013;8(4):480–94. https://doi.org/10.1504/ijdmb.2013.056617.

Article  PubMed  Google Scholar 

Petrov D, Miranda SP, Balu R, et al. Prediction of intracranial pressure crises after severe traumatic brain injury using machine learning algorithms. J Neurosurg. 2023;139(2):528–35. https://doi.org/10.3171/2022.12.JNS221860.

Article  PubMed  Google Scholar 

Ye G, Balasubramanian V, Li JK, Kaya M. Machine learning-based continuous intracranial pressure prediction for traumatic injury patients. IEEE J Transl Eng Health Med. 2022;10:4901008. https://doi.org/10.1109/JTEHM.2022.3179874.

Article  PubMed  Google Scholar 

Zhu J, Shan Y, Li Y, Wu X, Gao G. Predicting the severity and discharge prognosis of traumatic brain injury based on intracranial pressure data using machine learning algorithms. World Neurosurg. 2024;185:e1348–60. https://doi.org/10.1016/j.wneu.2024.03.085.

Article  PubMed  Google Scholar 

Melinosky C, Yang S, Hu P, et al. Continuous vital sign analysis to predict secondary neurological decline after traumatic brain injury. Front Neurol. 2018;9:761. https://doi.org/10.3389/fneur.2018.00761.

Article  PubMed  PubMed Central  Google Scholar 

Yang S, Hu P, Kalpakis K, et al. Utilizing ultra-early continuous physiologic data to develop automated measures of clinical severity in a traumatic brain injury population. Sci Rep. 2024;14(1):7618. https://doi.org/10.1038/s41598-024-57538-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue JK, Lee YM, Sun X, et al. Performance of the IMPACT and CRASH prognostic models for traumatic brain injury in a contemporary multicenter cohort: a TRACK-TBI study. J Neurosurg. 2024;141(2):417–29. https://doi.org/10.3171/2023.11.JNS231425.

Article  PubMed  Google Scholar 

Karabacak M, Jagtiani P, Dams-O’Connor K, Legome E, Hickman ZL, Margetis K. The MOST (Mortality Score for TBI): a novel prediction model beyond CRASH-Basic and IMPACT-Core for isolated traumatic brain injury. Injury. 2024;111956. https://doi.org/10.1016/j.injury.2024.111956.

Richter S, Czeiter E, Amrein K, et al. Prognostic value of serum biomarkers in patients with moderate-severe traumatic brain injury, differentiated by Marshall computer tomography classification. J Neurotrauma. 2023;40(21–22):2297–310. https://doi.org/10.1089/neu.2023.0029.

Article  PubMed  Google Scholar 

Eagle SR, Pease M, Nwachuku E, Deng H, Okonkwo DO. Prognostic models for traumatic brain injury have good discrimination but poor overall model performance for predicting mortality and unfavorable outcomes. Neurosurgery. 2023;92(1):137–43. https://doi.org/10.1227/neu.0000000000002150.

Article  PubMed  Google Scholar 

Eagle SR, Nwachuku E, Elmer J, Deng H, Okonkwo DO, Pease M. Performance of CRASH and IMPACT prognostic models for traumatic brain injury at 12 and 24 months post-injury. Neurotrauma Rep. 2023;4(1):118–23. https://doi.org/10.1089/neur.2022.0082.

Article  PubMed  PubMed Central  Google Scholar 

Bertotti MM, Martins ET, Areas FZ, et al. Glasgow coma scale pupil score (GCS-P) and the hospital mortality in severe traumatic brain injury: analysis of 1,066 Brazilian patients. Arq Neuropsiquiatr. 2023;81(5):452–459. Escala de coma de Glasgow com resposta pupilar (ECG-P) e mortalidade hospitalar em traumatismo cranioencefalico grave: analise de 1.066 pacientes brasileiros. https://doi.org/10.1055/s-0043-1768671

Eghzawi A, Alsabbah A, Gharaibeh S, Alwan I, Gharaibeh A, Goyal AV. Mortality predictors for adult patients with mild-to-moderate traumatic brain injury: a literature review. Neurol Int. 2024;16(2):406–18. https://doi.org/10.3390/neurolint16020030.

Article  PubMed  PubMed Central  Google Scholar 

Ahmadi S, Sarveazad A, Babahajian A, Ahmadzadeh K, Yousefifard M. Comparison of Glasgow Coma Scale and Full Outline of UnResponsiveness score for prediction of in-hospital mortality in traumatic brain injury patients: a systematic review and meta-analysis. Eur J Trauma Emerg Surg. 2023;49(4):1693–706. https://doi.org/10.1007/s00068-022-02111-w.

Article  PubMed  Google Scholar 

Popal Z, Bossers SM, Terra M, et al. Effect of physician-staffed emergency medical services (P-EMS) on the outcome of patients with severe traumatic brain injury: a review of the literature. Prehosp Emerg Care Sep-Oct. 2019;23(5):730–9. https://doi.org/10.1080/10903127.2019.1575498.

Article  Google Scholar 

McNett M. A review of the predictive ability of Glasgow Coma Scale scores in head-injured patients. J Neurosci Nurs. 2007;39(2):68–75. https://doi.org/10.1097/01376517-200704000-00002.

Article  PubMed  Google Scholar 

Bodien YG, Barra A, Temkin NR, et al. Diagnosing level of consciousness: the limits of the Glasgow coma scale total score. J Neurotrauma. 2021;38(23):3295–305. https://doi.org/10.1089/neu.2021.0199.

Article  PubMed  PubMed Central  Google Scholar 

Reith FC, Brennan PM, Maas AI, Teasdale GM. Lack of standardization in the use of the glasgow coma scale: results of international surveys. J Neurotrauma. 2016;33(1):89–94. https://doi.org/10.1089/neu.2014.3843.

Article  PubMed  Google Scholar 

Reith FC, Van den Brande R, Synnot A, Gruen R, Maas AI. The reliability of the Glasgow Coma Scale: a systematic review. Intensive Care Med. 2016;42(1):3–15. https://doi.org/10.1007/s00134-015-4124-3.

Article  PubMed  Google Scholar 

Gill MR, Reiley DG, Green SM. Interrater reliability of Glasgow Coma Scale scores in the emergency department. Ann Emerg Med. 2004;43(2):215–23. https://doi.org/10.1016/s0196-0644(03)00814-x.

Article  PubMed  Google Scholar 

Reith FC, Synnot A, van den Brande R, Gruen RL, Maas AI. Factors influencing the reliability of the glasgow coma scale: a systematic review. Neurosurgery. 2017;80(6):829–39. https://doi.org/10.1093/neuros/nyw178.

Article  PubMed  Google Scholar 

Reith FCM, Lingsma HF, Gabbe BJ, Lecky FE, Roberts I, Maas AIR. Differential effects of the Glasgow coma scale score and its components: an analysis of 54,069 patients with traumatic brain injury. Injury. 2017;48(9):1932–43. https://doi.org/10.1016/j.injury.2017.05.038.

Article  PubMed  Google Scholar 

Emami P, Czorlich P, Fritzsche FS, et al. Impact of Glasgow Coma Scale score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: a retrospective, multicenter cohort study. J Neurosurg. 2017;126(3):760–7. https://doi.org/10.3171/2016.1.JNS152385.

Article  PubMed  Google Scholar 

Hoffmann M, Lefering R, Rueger JM, et al. Pupil evaluation in addition to Glasgow coma scale components in prediction of traumatic brain injury and mortality. Br J Surg. 2012;99(Suppl 1):122–30. https://doi.org/10.1002/bjs.7707.

Article  PubMed  Google Scholar 

Marmarou A, Lu J, Butcher I, et al. Prognostic value of the Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: an IMPACT analysis. J Neurotrauma. 2007;24(2):270–80. https://doi.org/10.1089/neu.2006.0029.

Article 

Comments (0)

No login
gif