Early spinal cord development: from neural tube formation to neurogenesis

Hawley, S. H. et al. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9, 2923–2935 (1995).

Article  CAS  PubMed  Google Scholar 

Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).

Article  CAS  PubMed  Google Scholar 

Hemmati-Brivanlou, A. & Melton, D. A. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281 (1994).

Article  CAS  PubMed  Google Scholar 

Munoz-Sanjuan, I. & Brivanlou, A. H. Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271–280 (2002).

Article  CAS  PubMed  Google Scholar 

Metzis, V. et al. Nervous system regionalization entails axial allocation before neural differentiation. Cell 175, 1105–1118.e17 (2018). This research shows that cells undergo primary regionalization before neural induction, challenging the established model and supporting the idea of a dual evolutionary origin for the vertebrate CNS.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura-Yoshida, C. et al. Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev. Cell 9, 639–650 (2005).

Article  CAS  PubMed  Google Scholar 

Blassberg, R. et al. Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nat. Cell Biol. 24, 633–644 (2022). This work demonstrates that SOX2 levels control WNT signalling outcomes by regulating chromatin binding and transcriptional activity, with high SOX2 levels maintaining pluripotency and low levels promoting mesodermal differentiation.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meno, C. et al. Left-right asymmetric expression of the TGFβ-family member lefty in mouse embryos. Nature 381, 151–155 (1996).

Article  CAS  PubMed  Google Scholar 

Perea-Gomez, A. et al. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3, 745–756 (2002).

Article  CAS  PubMed  Google Scholar 

Takaoka, K. et al. The mouse embryo autonomously acquires anterior-posterior polarity at implantation. Dev. Cell 10, 451–459 (2006).

Article  CAS  PubMed  Google Scholar 

Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004).

Article  CAS  PubMed  Google Scholar 

Brennan, J. et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411, 965–969 (2001).

Article  CAS  PubMed  Google Scholar 

Mole, M. A., Weberling, A. & Zernicka-Goetz, M. Comparative analysis of human and mouse development: from zygote to pre-gastrulation. Curr. Top. Dev. Biol. 136, 113–138 (2020).

Article  PubMed  Google Scholar 

Mole, M. A. et al. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat. Commun. 12, 3679 (2021). This work uncovers important events in human embryo development, highlighting transitions in pluripotent states, the role of FGF signalling in tissue proliferation, and the formation of an anterior signalling centre to pattern the epiblast during early development.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rekaik, H. & Duboule, D. A CTCF-dependent mechanism underlies the Hox timer: relation to a segmented body plan. Curr. Opin. Genet. Dev. 85, 102160 (2024).

Article  CAS  PubMed  Google Scholar 

Spemann, H. & Mangold, H. Induction of embryonic primordia by implantation of organizers from a different species. Int. J. Dev. Biol. 100, 599–638 (1924).

Google Scholar 

Arendt, D., Tosches, M. A. & Marlow, H. From nerve net to nerve ring, nerve cord and brain — evolution of the nervous system. Nat. Rev. Neurosci. 17, 61–72 (2016).

Article  CAS  PubMed  Google Scholar 

Ryan, J. F. et al. Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2, e153 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Knezevic, V., De Santo, R. & Mackem, S. Two novel chick T-box genes related to mouse Brachyury are expressed in different, non-overlapping mesodermal domains during gastrulation. Development 124, 411–419 (1997).

Article  CAS  PubMed  Google Scholar 

Faas, L. & Isaacs, H. V. Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. Dev. Dyn. 238, 835–852 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morales, A. V., de la Rosa, E. J. & de Pablo, F. Expression of the cCdx-B homeobox gene in chick embryo suggests its participation in rostrocaudal axial patterning. Dev. Dyn. 206, 343–353 (1996).

Article  CAS  PubMed  Google Scholar 

Schulte-Merker, S., van Eeden, F. J., Halpern, M. E., Kimmel, C. B. & Nusslein-Volhard, C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

Article  CAS  PubMed  Google Scholar 

Smith, J. C., Price, B. M., Green, J. B., Weigel, D. & Herrmann, B. G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).

Article  CAS  PubMed  Google Scholar 

Martik, M. L. & Bronner, M. E. Regulatory logic underlying diversification of the neural crest. Trends Genet. 33, 715–727 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takemoto, T., Uchikawa, M., Kamachi, Y. & Kondoh, H. Convergence of Wnt and FGF signals in the genesis of posterior neural plate through activation of the Sox2 enhancer N-1. Development 133, 297–306 (2006).

Article  CAS  PubMed  Google Scholar 

Tzouanacou, E., Wegener, A., Wymeersch, F. J., Wilson, V. & Nicolas, J. F. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev. Cell 17, 365–376 (2009). This study describes the population of bipotent neuromesodermal progenitors that, persisting through all stages of body axis elongation, sustains axial elongation, generating neural ectoderm and mesoderm.

Article  CAS  PubMed  Google Scholar 

Gouti, M. et al. In vitro generation of neuromesodermal progenitors reveals distinct roles for Wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 12, e1001937 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Gouti, M. et al. A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev. Cell 41, 243–261.e7 (2017). This study demonstrates that a transcriptional network driven by RA and WNT signalling regulates NMP differentiation, balancing neural and mesodermal tissue specification during embryo axis elongation.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Gobartt, E. et al. Cell intercalation driven by SMAD3 underlies secondary neural tube formation. Dev. Cell 56, 1147–1163.e6 (2021). This work shows that SMAD3 and YAP activity are required for the intercalation of cells that drive secondary neural tube formation and body axis elongation in embryos.

Article  CAS  PubMed  Google Scholar 

Schnirman, R. E., Kuo, S. J., Kelly, R. C. & Yamaguchi, T. P. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr. Top. Dev. Biol. 153, 145–180 (2023).

Article  CAS  PubMed  Google Scholar 

Attardi, A. et al. Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 145, dev166728 (2018).

Article 

Comments (0)

No login
gif