Correlation in Stem Cell Technology, Tissue Engineering, and Regenerative Medicine

Bharti S, Kumar A. Synergies in stem cell research: Integrating technologies, strategies, and bionanomaterial innovations. Acta Histochem. 2024;126:152119.

Article  CAS  PubMed  Google Scholar 

Bharti S, Anant PS, Kumar A. Nanotechnology in stem cell research and therapy. J Nanoparticle Res [Internet]. 2023;25:1–24. https://doi.org/10.1007/s11051-022-05654-6

Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134:877–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Sig Transduct Target Ther [Internet]. 2024;9:112. Available from: https://www.nature.com/articles/s41392-024-01809-0. Accessed 10 Dec 2024.

Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet [Internet]. 2024;15:1–22. https://www.frontiersin.org/articles/10.3389/fgene.2024.1389558/full

Liu G, David BT, Trawczynski M, Fessler RG. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Reports. 2020;16:3–32.

Article  Google Scholar 

Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471:230–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471:225–30.

Article  CAS  PubMed  Google Scholar 

Zeng R, Huang X, Fu W, Ji W, Cai W, Xu M, et al. Construction of lentiviral vectors carrying six pluripotency genes in yak to obtain yak iPSC cells. Int J Mol Sci [Internet]. 2024;25:9431. Available from: https://www.mdpi.com/1422-0067/25/17/9431. Accessed 10 Dec 2024.

Pratumkaew P, Issaragrisil S, Luanpitpong S. Induced pluripotent stem cells as a tool for modeling hematologic disorders and as a potential source for cell-based therapies. Cells [Internet]. 2021;10:3250. Available from: https://www.mdpi.com/2073-4409/10/11/3250. Accessed 10 Dec 2024.

Tomaskovic-Crook E, Guerrieri-Cortesi K, Crook JM. Induced pluripotent stem cells for 2D and 3D modelling the biological basis of schizophrenia and screening possible therapeutics. Brain Res Bull [Internet]. 2021;175:48–62. https://doi.org/10.1016/j.brainresbull.2021.07.004

Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med [Internet]. 2010;363:1397–409. Available from: https://www.nejm.org/doi/abs/10.1056/NEJMoa0908679. Accessed 26 July 2023.

Chamberlain SJ, Chen PF, Ng KY, Bourgois-Rocha F, Lemtiri-Chlieh F, Levine ES, et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A. 2010;107:17668–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brennand K, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modeling schizophrenia using neurons. Nature [Internet]. 2011;473:221–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392969/. Accessed 26 July 2023.

Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature [Internet]. 2009;461:402–6. Available from: https://www.nature.com/articles/nature08320. Accessed 26 July 2023.

Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther [Internet]. 2022;13:366. https://doi.org/10.1186/s13287-022-03054-0

Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–3.

Article  CAS  PubMed  Google Scholar 

Kim JH, Lee S-R, Song YS, Lee HJ. Stem cell therapy in bladder dysfunction: where are we? And where do we have to go? Biomed Res Int [Internet]. 2013;2013:1–10. Available from: https://www.hindawi.com/journals/bmri/2013/930713/. Accessed 10 Dec 2024.

Shin JH, Ryu C-M, Yu HY, Shin D-M, Choo M-S. Current and future directions of stem cell therapy for bladder dysfunction. Stem Cell Rev Reports [Internet]. 2020;16:82–93. Available from: http://link.springer.com/10.1007/s12015-019-09922-2

Raya Á, Rodríguez-Piz I, Guenechea G, Vassena R, Navarro S, Barrero MJ, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009;460:53–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A. 2016;113:2206–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alzate-Correa D, Lawrence WR, Salazar-Puerta A, Higuita-Castro N, Gallego-Perez D. Nanotechnology-driven cell-based therapies in regenerative medicine. AAPS J. 2022;24:1–15.

Article  Google Scholar 

Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol [Internet]. 2024;103:151417. https://doi.org/10.1016/j.ejcb.2024.151417

Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, et al. LRRK2 mutant iPSC-derived da neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell. 2011;8:267–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu NTT, Khang LH, Thao NNP, Hien NTT, Chau To T, Diep LTH, et al. Zinc/cobalt-based zeolite imidazolate frameworks for simultaneously degrading dye and inhibiting bacteria. Hien MD, editor. J Nanomater [Internet]. 2022;2022:1–11. Available from: https://www.hindawi.com/journals/jnm/2022/8630685/. Accessed 14 Apr 2024.

Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: potential in therapeutic applications. Front Cell Dev Biol. 2022;10:1–31.

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

Article  CAS  PubMed  Google Scholar 

Narsinh KH, Sun N, Sanchez-Freire V, Lee AS, Almeida P, Hu S, et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest. 2011;121:1217–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narsinh K, Narsinh KH, Wu JC. Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circ Res. 2011;108:1146–56.

Article  CAS  PubMed  Google Scholar 

Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–6.

Article  CAS  PubMed  Google Scholar 

Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov [Internet]. 2017;16:115–30. https://doi.org/10.1038/nrd.2016.245

Zhang Y, Alexander PB, Wang X. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol [Internet]. 2017;9:a022145. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a022145

Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, et al. Stem cell-based therapy for human diseases. Sig Transduct Target Ther. 2022;7.

Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:1–22.

Article  Google Scholar 

Harrison DE, Astle CM, Lerner C. Number and continuous proliferative pattern of transplanted primitive immunohematopoietic stem cells. Proc Natl Acad Sci U S A. 1988;85:822–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther. 2019;10:1–13.

Article  Google Scholar 

White MD, Plachta N. Specification of the first mammalian cell lineages in vivo and in vitro. Cold Spring Harb Perspect Biol [Internet]. 2020;12:a035634.

Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules. 2012;17:6196–236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Ren J, Hu Y, Zhou F, Zhang L. TGFβ family signaling in human stem cell self-renewal and differentiation. Cell Regen [Internet]. 2024;13:26. https://doi.org/10.1186/s13619-024-00207-9

Rayon T, Stamataki D, Perez-Carrasco R, Garcia-Perez L, Barrington C, Melchionda M, et al. Species-specific pace of development is associated with differences in protein stability. Science [Internet]. 2020;369:1–24. Available from: https://www.science.org/doi/10.1126/science.aba7667

Smith A. Pluripotent stem cells: private obsession and public expectation. EMBO Mol Med [Internet]. 2010;2:113–6. Available from: https://www.embopress.org/doi/10.1002/emmm.201000065

Dong Y, Wu X, Chen X, Zhou P, Xu F, Liang W. Nanotechnology shaping stem cell therapy: recent advances, application, challenges, and future outlook. Biomed Pharmacother [Internet]. 2021;137:111236. https://doi.org/10.1016/j.biopha.2021.111236

Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol. 2018;6:1–23.

Article  Google Scholar 

Bharti S, Anant PS, Kumar A. Nanotechnology in stem cell research and therapy. J Nanoparticle Res [Internet]. 2023;25:6. https://doi.org/10.1007/s11051-022-05654-6

Eswaramoorthy SD, Ramakrishna S, Rath SN. Recent advances in three-dimensional bioprinting of stem cells. J Tissue Eng Regen Med. 2019;13:908–24.

CAS  PubMed  Google Scholar 

Tharakan S, Khondkar S, Ilyas A. Bioprinting of stem cells in multimaterial scaffolds and their applications in bone tissue engineering. Sensors [Internet]. 2021;21:7477. Available from: https://www.mdpi.com/1424-8220/21/22/7477. Accessed 4 Sept 2023.

Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: from tissue and organ development to in vitro models. Chem Rev. 2020;120:10547–607.

Article  CAS  PubMed  Google Scholar 

Frenz-Wiessner S, Fairley SD, Buser M, Goek I, Salewskij K, Jonsson G, et al. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods. 2024;21:868–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Messina A, Luce E, Hussein M, Dubart-Kupperschmitt A. Pluripotent-stem-cell-derived hepatic cells: hepatocytes and organoids for liver therapy and regeneration. Cells [Internet]. 2020;9:420. Available from: https://www.mdpi.com/2073-4409/9/2/420. Accessed 4 Sept 2023.

Heydari Z, Najimi M, Mirzaei H, Shpichka A, Ruoss M, Farzaneh Z, et al. Tissue engineering in liver regenerative medicine: insights into novel translational technologies. Cells. 2020;9:1–28.

Article 

Comments (0)

No login
gif