Hanawa T. Research and development of metals for medical devices based on clinical needs. Sci Technol Adv Mater. 2012;13:064102. https://doi.org/10.1088/1468-6996/13/6/064102.
Article CAS PubMed PubMed Central Google Scholar
Pesode P, Barve S, Karad V. Magnesium alloy for biomedical applications. In: Advanced Materials for Biomechanical Applications, 1st edn. CRC Press, Boca Raton. 2022; pp 133–158. https://doi.org/10.1201/9781003286806-7.
Sansone V. The effects on bone cells of metal ions released from orthopaedic implants. A review, CCMBM. 2013. https://doi.org/10.11138/ccmbm/2013.10.1.034.
Lhotka C, Szekeres T, Steffan I, Zhuber K, Zweymüller K. Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements. J Orthop Res. 2003;21:189–95. https://doi.org/10.1016/S0736-0266(02)00152-3.
Article CAS PubMed Google Scholar
Wang ML, Nesti LJ, Tuli R, Lazatin J, Danielson KG, Sharkey PF, Tuan RS. Titanium particles suppress expression of osteoblastic phenotype in human mesenchymal stem cells. J Orthop Res. 2002;20:1175–84. https://doi.org/10.1016/S0736-0266(02)00076-1.
Article CAS PubMed Google Scholar
Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34. https://doi.org/10.1016/j.biomaterials.2005.10.003.
Article CAS PubMed Google Scholar
Pietak A, Mahoney P, Dias GJ, Staiger MP. Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci: Mater Med. 2008;19:407–15. https://doi.org/10.1007/s10856-007-3172-9.
Article CAS PubMed Google Scholar
Puleo DA, Huh WW. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. J Appl Biomater. 1995;6:109–16. https://doi.org/10.1002/jab.770060205.
Article CAS PubMed Google Scholar
Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants*. J Bone Joint Surgery (American Volume). 1998;80:268–82. https://doi.org/10.2106/00004623-199802000-00015.
Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elbow Surg. 2003;12:35–9. https://doi.org/10.1067/mse.2003.22.
Van Lenthe GH, De Waal Malefijt MC, Huiskes R. Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone Joint Surg Br. 1997;79-B:117–22. https://doi.org/10.1302/0301-620X.79B1.0790117.
Bugbee WD, Culpepper WJ, Engh CA, Engh CA. Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement*. J Bone Joint Surg. 1997;79:1007–12. https://doi.org/10.2106/00004623-199707000-00006.
Article CAS PubMed Google Scholar
Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10:4561–73. https://doi.org/10.1016/j.actbio.2014.07.005.
Article CAS PubMed Google Scholar
Tan L, Yu X, Wan P, Yang K. Biodegradable materials for bone repairs: a review. J Mater Sci Technol. 2013;29:503–13. https://doi.org/10.1016/j.jmst.2013.03.002.
Wankhede S, Pesode P, Gaikwad S, Pawar S, Chipade A. Implementing combinative distance base assessment (CODAS) for selection of natural fibre for long lasting compositES. MSF. 2023;1081:41–8. https://doi.org/10.4028/p-4pd120.
Ren Y, Sikder P, Lin B, Bhaduri SB. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK). Mater Sci Eng, C. 2018;85:107–13. https://doi.org/10.1016/j.msec.2017.12.025.
Saris N-EL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. Clin Chim Acta. 2000;294:1–26. https://doi.org/10.1016/S0009-8981(99)00258-2.
Article CAS PubMed Google Scholar
He LY, Zhang XM, Liu B, Tian Y, Ma WH. Effect of magnesium ion on human osteoblast activity. Braz J Med Biol Res. 2016;49:e5257. https://doi.org/10.1590/1414-431x20165257.
Article CAS PubMed PubMed Central Google Scholar
Grünewald TA, Rennhofer H, Hesse B, Burghammer M, Stanzl-Tschegg SE, Cotte M, Löffler JF, Weinberg AM, Lichtenegger HC. Magnesium from bioresorbable implants: distribution and impact on the nano- and mineral structure of bone. Biomaterials. 2016;76:250–60. https://doi.org/10.1016/j.biomaterials.2015.10.054.
Article CAS PubMed Google Scholar
Pesode P, Barve S, Wankhede SV, Ahmad A. Sustainable materials and technologies for biomedical applications. Adv Mater Sci Eng. 2023;2023:1–22. https://doi.org/10.1155/2023/6682892.
Kannan MB, Raman RKS. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials. 2008;29:2306–14. https://doi.org/10.1016/j.biomaterials.2008.02.003.
Article CAS PubMed Google Scholar
Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33:477–86. https://doi.org/10.1007/s11661-002-0109-2.
Song G. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49:1696–701. https://doi.org/10.1016/j.corsci.2007.01.001.
Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63–72. https://doi.org/10.1016/j.cossms.2009.04.001.
Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H. Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater. 2012;2012:1–10. https://doi.org/10.1155/2012/641430.
Pesode P, Barve S. A review—metastable β titanium alloy for biomedical applications. J Eng Appl Sci. 2023;70:25. https://doi.org/10.1186/s44147-023-00196-7.
Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003;24:27–37. https://doi.org/10.1016/S0098-2997(02)00089-4.
Article CAS PubMed Google Scholar
Kumar K, Das A, Prasad SB. Recent developments in biodegradable magnesium matrix composites for orthopaedic applications: a review based on biodegradability, mechanical and biocompatibility perspective. Mater Today: Proceedings. 2021;44:2038–42. https://doi.org/10.1016/j.matpr.2020.12.133.
Nakano T. Mechanical properties of metallic biomaterials. In: Metals for Biomedical Devices, Elsevier. 2010; pp 71–98. https://doi.org/10.1533/9781845699246.2.71.
Peron M, Torgersen J, Berto F. Mg and its alloys for biomedical applications: exploring corrosion and its interplay with mechanical failure. Metals. 2017;7:252. https://doi.org/10.3390/met7070252.
Marin E, Lanzutti A. Biomedical applications of titanium alloys: a comprehensive review. Materials. 2023;17:114. https://doi.org/10.3390/ma17010114.
Article CAS PubMed PubMed Central Google Scholar
Mahajan A, Devgan S, Kalyanasundaram D. Surface alteration of cobalt-chromium and duplex stainless steel alloys for biomedical applications: a concise review. Mater Manuf Processes. 2023;38:260–70. https://doi.org/10.1080/10426914.2022.2105873.
Mahmoudi Hashemi P, Borhani E, Nourbakhsh MS. A review on nanostructured stainless steel implants for biomedical application. Nanomed J. 2016;3:202–16. https://doi.org/10.22038/nmj.2016.7574.
Comments (0)