D-dimer cutoff values for predicting functional prognosis in patients with severe head trauma: a multi-centre prospective observational study

Stocchetti N, Zanier ER. Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. Crit Care. 2016;20. https://doi.org/10.1186/s13054-016-1318-1.

Suehiro E, Fujiyama Y, Kiyohira M, Haji K, Miyata A, Yokota H. Neurotraumatology. 2019;42:71–88. https://doi.org/10.32187/neurotraumatology.42.2_71. Outline of the Japan Neurotrauma Data Bank Project 2015: analysis of the data in 1345 cases with traumatic brain injury.

Hashmi A, Ibrahim-Zada I, Rhee P, Aziz H, Fain MJ, Friese RS, et al. Predictors of mortality in geriatric trauma patients: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2014;76:894–901. https://doi.org/10.1097/ta.0b013e3182ab0763.

Article  PubMed  Google Scholar 

Tian H-L, Chen H, Wu B-S, Cao H-L, Xu T, Hu J, et al. D-dimer as a predictor of progressive hemorrhagic injury in patients with traumatic brain injury: analysis of 194 cases. Neurosurg Rev. 2010;33:359–66. https://doi.org/10.1007/s10143-010-0251-z.

Article  PubMed  Google Scholar 

Yabuno S, Yasuhara T, Murai S, Yumoto T, Naito H, Nakao A, et al. Predictive factors of return home and return to work for intensive care unit survivors after traumatic brain injury with a follow-up period of 2 years. Neurol Med Chir (Tokyo). 2022;62:465–74. https://doi.org/10.2176/jns-nmc.2022-0149.

Article  PubMed  Google Scholar 

Hayakawa M, Maekawa K, Kushimoto S, Kato H, Sasaki J, Ogura H, et al. High D-dimer levels predict a poor outcome in patients with severe trauma, even with high fibrinogen levels on arrival: a multicenter retrospective study. Shock. 2016;45:308–14. https://doi.org/10.1097/shk.0000000000000542.

Article  CAS  PubMed  Google Scholar 

Allard CB, Scarpelini S, Rhind SG, Baker AJ, Shek PN, Tien H, et al. Abnormal coagulation tests are associated with progression of traumatic intracranial hemorrhage. J Trauma. 2009;67:959–67. https://doi.org/10.1097/ta.0b013e3181ad5d37.

Article  PubMed  Google Scholar 

Karri J, Cardenas JC, Matijevic N, Wang Y-W, Choi S, Zhu L, et al. Early fibrinolysis associated with hemorrhagic progression following traumatic brain injury. Shock. 2017;48:644–50. https://doi.org/10.1097/shk.0000000000000912.

Article  CAS  PubMed  Google Scholar 

Nakae R, Takayama Y, Kuwamoto K, Naoe Y, Sato H, Yokota H. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury. J Neurotrauma. 2016;33:688–95. https://doi.org/10.1089/neu.2015.4039.

Article  PubMed  Google Scholar 

Juratli TA, Zang B, Litz RJ, Sitoci K-H, Aschenbrenner U, Gottschlich B, et al. Early hemorrhagic progression of traumatic brain contusions: frequency, correlation with coagulation disorders, and patient outcome: a prospective study. J Neurotrauma. 2014;31:1521–7. https://doi.org/10.1089/neu.2013.3241.

Article  PubMed  Google Scholar 

Mukhopadhyay A, Chhabra G, Sharma S, Subramanian A, Agrawal D, Sinha S. Coagulopathy as prognostic marker in acute traumatic brain injury. J Emerg Trauma Shock. 2013;6:180. https://doi.org/10.4103/0974-2700.115332.

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, He M, Song Y, Xu J. Prognostic role of D-dimer level upon admission in patients with traumatic brain injury. Med (Baltim). 2018;97:e11774. https://doi.org/10.1097/md.0000000000011774.

Article  CAS  Google Scholar 

Yuan F, Ding J, Chen H, Guo Y, Wang G, Gao W-W, et al. Predicting progressive hemorrhagic injury after traumatic brain injury: derivation and validation of a risk score based on admission characteristics. J Neurotrauma. 2012;29:2137–42. https://doi.org/10.1089/neu.2011.2233.

Article  PubMed  PubMed Central  Google Scholar 

Kuo J-R, Lin K-C, Lu C-L, Lin H-J, Wang C-C, Chang CH. Correlation of a high D-dimer level with poor outcome in traumatic intracranial hemorrhage. Eur J Neurol. 2007;14:1073–8. https://doi.org/10.1111/j.1468-1331.2007.01908.x.

Article  PubMed  Google Scholar 

Takayama Y, Yokota H, Sato H, Naoe Y, Araki T. Pathophysiology, mortality, treatment of acute phase of haemostatic disorders of traumatic brain injury. Jpn J Neurosurg. 2013;22:837–41. https://doi.org/10.7887/jcns.22.837.

Article  Google Scholar 

Shinohara Y, Minematsu K, Amano T, Ohashi Y. Modified Rankin scale with expanded guidance scheme and interview questionnaire: interrater agreement and reproducibility of assessment. Cerebrovasc Dis. 2006;21:271–8. https://doi.org/10.1159/000091226.

Article  PubMed  Google Scholar 

Marino MA, Siddiqi I, Maniakhina L, Burton PM, Reier L, Duong J, et al. Neurosurgical outcomes in severe traumatic brain injuries between service lines: review of a single institution database. Cureus. 2023;15:e37445. https://doi.org/10.7759/cureus.37445.

Article  PubMed  PubMed Central  Google Scholar 

Livingston DH, Lavery RF, Mosenthal AC, Knudson MM, Lee S, Morabito D, et al. Recovery at one year following isolated traumatic brain injury: a western trauma association prospective multicenter trial. J Trauma. 2005;59:1298–304. https://doi.org/10.1097/01.ta.0000196002.03681.18.

Article  PubMed  Google Scholar 

Undén J, the Scandinavian Neurotrauma Committee (SNC), Ingebrigtsen T, Romner B. Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC Med. 2013;11. https://doi.org/10.1186/1741-7015-11-50.

Tien HC, Cunha JRF, Wu SN, Chughtai T, Tremblay LN, Brenneman FD, et al. Do trauma patients with a Glasgow coma scale score of 3 and bilateral fixed and dilated pupils have any chance of survival? J Trauma. 2006;60:274–8. https://doi.org/10.1097/01.ta.0000197177.13379.f4.

Article  PubMed  Google Scholar 

Barmparas G, Liou DZ, Lamb AW, Gangi A, Chin M, Ley EJ, et al. Prehospital hypertension is predictive of traumatic brain injury and is associated with higher mortality. J Trauma Acute Care Surg. 2014;77:592–8. https://doi.org/10.1097/ta.0000000000000382.

Article  CAS  PubMed  Google Scholar 

Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60. https://doi.org/10.3758/brm.41.4.1149.

Article  PubMed  Google Scholar 

Chapman MP, Moore EE, Moore HB, Gonzalez E, Gamboni F, Chandler JG, et al. Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg. 2016;80:16–25. https://doi.org/10.1097/ta.0000000000000885.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayakawa M. Pathophysiology of trauma-induced coagulopathy: disseminated intravascular coagulation with the fibrinolytic phenotype. J Intensive Care. 2017;5. https://doi.org/10.1186/s40560-016-0200-1.

Hayakawa M, Maekawa K, Kushimoto S, Kato H, Sasaki J, Ogura H, et al. Hyperfibrinolysis in severe isolated traumatic brain injury may occur without tissue hypoperfusion: a retrospective observational multicentre study. Crit Care. 2017;21. https://doi.org/10.1186/s13054-017-1811-1.

Yutthakasemsunt S, Kittiwatanagul W, Piyavechvirat P, Thinkamrop B, Phuenpathom N, Lumbiganon P. Tranexamic acid for patients with traumatic brain injury: a randomized, double-blinded, placebo-controlled trial. BMC Emerg Med. 2013;13. https://doi.org/10.1186/1471-227x-13-20.

CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394:1713–23. https://doi.org/10.1016/s0140-6736(19)32233-0.

Article  CAS  Google Scholar 

Comments (0)

No login
gif